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Signature Grids

Signature F : [q]n → R
Domain [q] := {0, 1, . . . , q − 1}
Arity n ≥ 0

e.g. q = 2, n = 3: F (x1, x2, x3) for Boolean variables x1, x2, x3.

Let F be a set of signatures.

F-grid Ω is a multigraph with a signature from F on each vertex

Arity of signature equals degree of vertex

F1

F2

F3 F4
Ω
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Holant Problems

F1

F2

F3 F4
Ω

Let Fv be the function on vertex v .

Let δ(v) be an ordered list of edges incident to v .

Goal: compute the Holant value of Ω:

HolantF (Ω) =
∑

σ:E(Ω)→[q]

∏
v∈V (Ω)

Fv (σ(δ(v))).

3 / 44



Holant Problems

F1

F2

F3 F4
Ω

0

1

Example: domain q = 2:

HolantF (Ω) = F1(1, 0) · F2(1, 0) · F3(0, 0, 1) · F4(1)+
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Holant Problems

F1

F2

F3 F4
Ω

0

1

Example: domain q = 2:

HolantF (Ω) = F1(1, 0) · F2(1, 0) · F3(0, 0, 1) · F4(1) +
F1(1, 0) · F2(1, 1) · F3(0, 1, 1) · F4(1) +
. . .
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Example: Counting Perfect Matchings

EO2

EO2

EO3 EO1

Ω

EOn : {0, 1}n → {0, 1} – ExactOne signature.

EOn(x1, . . . , xn) = 1 iff exactly one xi = 1.
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Example: Counting Perfect Matchings

EO2

EO2

EO3 EO1

Ω

0

1

HolantEO(Ω) = EO1(1, 0) · EO2(1, 0) · EO3(0, 0, 1) · EO4(1)+

= 1 · 1 · 1 · 1+
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Example: Counting Perfect Matchings

EO2

EO2

EO3 EO1

Ω

0

1

HolantEO(Ω) = EO1(1, 0) · EO2(1, 0) · EO3(0, 0, 1) · EO4(1) +

EO1(1, 0) · EO2(1, 1) · EO3(0, 1, 1) · EO4(1) +

. . .

= 1 · 1 · 1 · 1 +
1 · 0 · 0 · 1 +
. . .
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Example: Counting Graph Homomorphisms

ϕ : V (K )→ V (X ) is a graph homomorphism if it maps all edges to
edges: {u, v} ∈ E (K ) =⇒ {ϕ(u), ϕ(v)} ∈ E (X ).
EQ = {=n| n ∈ N} where

(=n)(x1, . . . , xn) =

{
1 x1 = . . . = xn

0 otherwise

(# homomorphisms K → X ) = Holant{AX }∪EQ(Ω):
Domain [q] = V (X ). Here q = 3.

K
=3 =2

=2 =1=4

Ω

∈ EQ
= AX

X
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Why study Holant?

Very expressive framework for counting problems.

But restricted enough to admit complexity dichotomy theorems:

For any signature set F (of a certain class), HolantF is always either
in P or #P-hard, with nothing in between.

Broad dichotomies exist on Boolean domain (q = 2) for F containing
signatures that are

Complex-valued and symmetric (Cai, Guo, and Williams [CGW16])

Real-valued (Shao and Cai [SC20])

Weaker dichotomies exist on higher domain q > 2 for Holant∗ problems:

q = 3 and a single complex-valued symmetric ternary function
(Cai, Lu, and Xia [CLX13])

q = 4 and a single {0, 1}-valued symmetric ternary function
(Liu, Fan, and Cai [LFC23])
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Gadgets

A gadget is a signature grid with dangling edges.

Several signatures assembled into a new signature.

Inputs along dangling edges.
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Gadgets and signature matrices

e1

e2

e3

e4

e5

a

b

x

y

z

K

a, b, x , y , z ∈ [q]

q2 × q3 signature matrix M(K).

M(K)ab,xyz =
∑

σ:E(K)→[q]
σ(e1,e2)=(a,b)

σ(e3,e4,e5)=(x ,y ,z)

∏
v∈V (K)

Fv (σ(δ(v))).
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Gadget operations

K
L

K⊗ L

M(K⊗ L) = M(K)⊗M(L)
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Gadget operations

K
L

K ◦ L

M(K ◦ L) = M(K) ◦M(L)
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Gadget operations

K
L

K⊤

M(K⊤) = M(K)⊤
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Signature Transformations

Let H be q × q matrix, F : [q]n → R.
Define HF : [q]n → R by applying H to each input of F :

H⊗5 F 5,0

◦ =

(HF )5,0

F HF

H⊗n is qn × qn matrix, F n,0 is length-qn vector.

HF is F under basis H.

For signature set F , define H F := {HF | F ∈ F}.
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The Orthogonal Holant Theorem

Let F and G be signature sets on same domain [q].

Assume there is a bijection between F and G preserving arity.

For F-grid Ω, define G-grid ΩF→G by replacing every F ∈ F by the
corresponding G ∈ G.

F1

F2

F3 F4

Ω

G1

G2

G3 G4

ΩF→G

⇝

Theorem (The Orthogonal Holant Theorem)

If G = H F for some orthogonal H, then, for every F-grid Ω,

HolantF (Ω) = HolantG(ΩF→G).
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F1

F2

F3 F4
=

Ω

G1

G2

G3 G4

ΩF→G

=

=

=

F1

F2

F3

F4

=

G1

G2

G3

G4

F1

F2

F3

F4

(H⊤H)⊗8

F1

F2

F3

F4
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= = =

(H⊤)⊗6

H⊤H

H⊤H

H⊤H
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The Holant Theorem

The orthogonal Holant theorem is a special case of Valiant’s general
Holant theorem. [Val08]

Holographic algorithms using the Holant theorem are the original
motivation for Holant problems.

Xia conjectured the converse of the Holant theorem [Xia10].

Converse does not hold in general [CGW16]

But we show it does in the orthogonal case:

Definition

F and G are Holant-indistinguishable if, for every F-grid Ω,

HolantF (Ω) = HolantG(ΩF→G).

Theorem (Main Result)

G = H F for orthogonal H if and only if F and G are
Holant-indistinguishable.
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Counting Indistinguishability Theorems

Theorem (Main Result)

G = H F for some orthogonal H if and only if F and G are
Holant-indistinguishable.

This is a counting indistinguishability theorem

Two objects are equivalent up to some algebraic transformation iff
they are indistinguishable parameters for a counting problem.
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Counting Indistinguishability Theorems

Let X and Y be graphs:

Theorem (Lovász [Lov67])

X and Y are isomorphic iff X and Y are homomorphism-indistinguishable.

Theorem

HAX = AYH for some orthogonal H iff X and Y are
homomorphism-indistinguishable over all cycles.

Theorem (Mančinska-Roberson [MR20])

X and Y are quantum isomorphic iff X and Y are
homomorphism-indistinguishable over all planar graphs.

The first two are direct consequences of our main result.
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Counting Indistinguishability Theorems

Theorem (Lovász [Lov67])

X and Y are isomorphic iff X and Y are homomorphism-indistinguishable.

Theorem (Main Result)

G = H F for some orthogonal H iff F and G are Holant-indistinguishable.

Recall: #hom(K ,X ) ≡ Holant{AX }∪EQ.

K
=3 =2

=4=2 =1

Ω

∈ EQ
= AX

X

H EQ = EQ iff H is a permutation matrix.
H({AX} ∪ EQ) = {AY } ∪ EQ iff H is a permutation matrix and
transforms AX to AY .
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Proof of the Converse

Theorem (Main Result)

G = H F for some orthogonal H iff F and G are Holant-indistinguishable.

Assume F and G are Holant-indistinguishable.

Frequent idea: Can add new signatures to F and G if
Holant-indistinguishability is preserved.

Can assume F and G are gadget-closed

i.e. F contains all signatures of F-gadgets.
Adding gadget signatures preserves Holant-indistinguishability.

Proof by induction on q (the domain size).

Assume theorem holds for all F ′,G′ on domain smaller than q.
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Proof of the Converse: Inductive Lemma

Lemma (Inductive Lemma)

If F and G contain a diagonal matrix (binary signature) D ̸∈ span(I ), then
there is an orthogonal H such that G = H F .

D =


4

4
4

2
3

⇝

1

1
1

0
0

 ,


0

0
0

1
1


1X 1Y

Define subdomains X = {0, 1, 2},Y = {3, 4} ⊂ [5] = [q]

Interpolate 1X ,1Y ∈ F ,G.
F |X ,G |X : subsignatures on domain X
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Proof of the Converse: Inductive Lemma

F |X and G |X are Holant-indistinguishable:

Ω Ω′

ΩF |X→G |X Ω′
F→G

=

(G1)|X (G2)|X

(G4)|X(G3)|X (G5)|X

=

(F1)|X (F2)|X

(F4)|X(F3)|X (F5)|X

=

G1 G2

G4G3 G5

= 1X

F1 F2

F4F3 F5

= 1X
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Proof of the Converse: Inductive Lemma

F |X and G |X are Holant-indistinguishable.

F |Y and G |Y are Holant-indistinguishable, similarly.

|X |, |Y | < q.

So by induction, there are orthogonal HX ,HY such that
G |X = HX F |X and G |Y = HY F |Y .
Combine these into a full transformation H such that G = H F .

Requires some more work...

Lemma (Inductive Lemma)

If F and G contain a diagonal matrix (binary signature) D ̸∈ span(I ), then
there is an orthogonal H such that G = H F .

How to obtain D?
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The Stabilizer of the Disjoint Union

Let F have domain V (F), G have domain V (G), both n-ary

Define n-ary signature F ⊕ G on domain V (F) ⊔ V (G).
Acts as F when all n inputs from V (F).
Acts as G when all n inputs from V (G).
0 on mixed inputs from V (F) and V (G).

F ⊕G := {F ⊕ G | corresponding F ∈ F ,G ∈ G}.

Definition

Stab(F ⊕G) := {orthogonal H | H(F ⊕G) = F ⊕G}.

H ∈ Stab(F ⊕G) indexed by V (F) ⊔ V (G).
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Proof of the Converse: Nonconstructive Lemma

H ∈ Stab(F ⊕G) indexed by V (F) ⊔ V (G).
H has block form

[ V (F) V (G)
V (F) HV (F),V (F) HV (F),V (G)
V (G) HV (G),V (F) HV (G),V (G)

]
.

Lemma (Nonconstructive Lemma)

If F and G are Holant-indistinguishable, then Stab(F ⊕G) contains an H
which is not block-diagonal

i.e. HV (G),V (F) ̸= 0 or HV (G),V (F) ̸= 0.

Proved using invariant-theoretic theorem of Schrijver [Sch08].
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Proof of the Converse: A Diagonal Intertwiner

Suppose WLOG that HV (G),V (F) ̸= 0.

Singular value decomposition: HV (G),V (F) = U⊤DV with D ̸= 0.

H =

[ V (F) V (G)
V (F) ∗ ∗
V (G) U⊤DV ∗

]
Apply orthogonal transforms V to F and U to G.
Stab(F ⊕G) 7→ (V ⊕ U) Stab(F ⊕G)(V ⊕ U)⊤.

H 7→
[
V 0
0 U

] [
∗ ∗

U⊤DV ∗

] [
V⊤ 0
0 U⊤

]
=

[
∗ ∗
D ∗

]
∈ Stab(F ⊕G)

Therefore D intertwines F and G:
If F ∈ F and corresponding G ∈ G have arity 2n, then

D⊗nF n,n = Gn,nD⊗n.
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Proof of the Converse: A Diagonal Intertwiner

D⊗nF n,n = Gn,nD⊗n for every corresponding F ∈ F ,G ∈ G

If D ∈ span(I ) then D = ±I so (±I )G = F .
If D ̸∈ span(I )...

Lemma (Inductive Lemma)

If F and G are Holant-indistinguishable and contain a diagonal matrix
D ̸∈ span(I ), then there is an orthogonal H such that G = H F .

Show F ∪{D} and G ∪{D} are Holant-indistinguishable (next slide).

Then Lemma gives orthogonal H such that (G ∪{D}) = H(F ∪{D}).
So G = H F .
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Proof of the Converse: A Diagonal Intertwiner

D⊗nF n,n = Gn,nD⊗n for every corresponding F ∈ F ,G ∈ G

Recall that F and G are gadget-closed.
Let Ω be an (F ∪{D})-grid.

Ω

ΩF ∪{D}→G ∪{D}

=

=

=

=

=

= D
∈ F
∈ G

D⊗3F 3,3

G 3,3D⊗3
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Symmetric Signatures

F is symmetric if its value is invariant under reordering of its inputs

F = F = F = . . .

0

1

1

2

2

1

1

2

0

2

2

0

1

2

1
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Generalized Equality Signatures

E ∈ GenEq: E (x1, . . . , xn) = 0 unless x1 = . . . = xn.

Every connected GenEq-gadget has a signature in GenEq:

0

0

0

0

1
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Generalized Equality Signatures

E ∈ GenEq: E (x1, . . . , xn) = 0 unless x1 = . . . = xn.

Every connected GenEq-gadget has a signature in GenEq:

0

0

0

0

1
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Generalized Equality Signatures

E ∈ GenEq: E (x1, . . . , xn) = 0 unless x1 = . . . = xn.

Every connected GenEq-gadget has a signature in GenEq:

0

0

0

0

1
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Odeco Signature Sets

Every connected GenEq-gadget has a signature in GenEq.

Every connected GenEq-gadget has a symmetric signature.

GenEq is the only signature set with this ↑ property
up to orthogonal transformation.

Definition

F is odeco if ∃ orthogonal H such that H F ⊂ GenEq.

Theorem

F is odeco iff every connected F-gadget has a symmetric signature.

In fact, we get something a little stronger...
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Odeco Signature Sets

F1 F2
F1 ∗ F2 :

Theorem

The following are equivalent for a set F of symmetric signatures:

1 F is odeco (∃ orthogonal H s.t. H F ⊂ GenEq)

2 Every connected F-gadget has a symmetric signature

3 F1 ∗ F2 is symmetric for every F1,F2 ∈ F .

Binary odeco signature ←→ diagonalizable matrix.

If F1,F2 are binary, then F1 ∗ F2 is matrix product.

F1 ∗ F2 is symmetric iff F1 and F2 commute.
F1F2 = (F1F2)

⊤ = F⊤
2 F⊤

1 = F2F1.

So 1 ⇐⇒ 3 says commuting (real, symmetric) matrices are
simultaneously diagonalizable.
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Odeco Signature Sets

Theorem

The following are equivalent for a set F of symmetric signatures:

1 F is odeco (∃ orthogonal H s.t. H F ⊂ GenEq)

2 Every connected F-gadget has a symmetric signature

3 F1 ∗ F2 is symmetric for every F1,F2 ∈ F .

1 ⇐⇒ 3 extends characterization of [BDHR17].
1 =⇒ 2, 3:

Every GenEq gadget has a symmetric signature,
Orthogonal transformation preserves this property

3 =⇒ 2:
Gadget is connected =⇒ ∃ a path between any two dangling edges.
Apply symmetry of F1 ∗ F2 to every vertex along this path.

2 =⇒ 1: apply the main theorem!

Theorem

G = H F for orthogonal H iff F and G are Holant-indistinguishable.
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Theorem

Every connected F-gadget has a symmetric signature =⇒ F is odeco

Goal: find a G ⊂ GenEq s.t. F and G are Holant-indistinguishable.

Consider F-grid Ω containing signatures F1, . . . ,Fp ∈ F .
Can assume every Fi has even arity

Replace Fi with Fi ∗ Fi .

Break an edge of Ω to produce a connected binary gadget K.

F
F̃ :

Lemma

M(K) =
∏p

i=1 F̃i .
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Theorem

Every connected F-gadget has a symmetric signature =⇒ F is odeco

Lemma

M(K) =
∏p

i=1 F̃i .

Induction on p (the number of vertices)

K

= ⇝ =

K′ K′

F̃p
p p p
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Theorem

Every connected F-gadget has a symmetric signature =⇒ F is odeco

Lemma (proved)

M(K) =
∏p

i=1 F̃i .

Each F̃i F̃j is symmetric, so F̃i and F̃j commute.

Thus {F̃i}pi=1 are simultaneously diagonalizable under basis H.

Replace F with H F to assume each F̃i = diag(vi ).

Define Gi := ni -ary-diag(v
i ) ∈ GenEq.

ni := arity(Fi ).
i.e. Gi (x , . . . , x︸ ︷︷ ︸

ni

) = (vi )x .
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Theorem

Every connected F-gadget has a symmetric signature =⇒ F is odeco

Lemma (proved)

M(K) =
∏p

i=1 F̃i .

F̃i = diag(vi ).

Gi ∈ GenEq and (vi )x = Gi (x , . . . , x︸ ︷︷ ︸
ni

). KF→G

x

x

M(K)x ,x =

p∏
i=1

(vi )x =

p∏
i=1

Gi (x , . . . , x) = M(KF→G)x ,x .

Connect the two dangling edges of K to recreate Ω.

M(K) = M(KF→G), so Holant(Ω) = Holant(ΩF→G).

Thus F and G are Holant-indistinguishable.

By main theorem, ∃ orthogonal H such that H F = G ⊂ GenEq.
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Proof of the Converse: A Diagonal Intertwiner

Let F ,G have arity 2n.

H⊗6

= ⇐⇒

H⊗3 (H⊤)⊗3

=

= F ⊕ G

H ∈ Stab(F ⊕ G ) ⇐⇒ H⊗n(F ⊕ G )n,n = (F ⊕ G )n,nH⊗n ⇐⇒ ∗ . . . ∗
... . .

. ...
D⊗n . . . ∗



F n,n 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . G n,n

 =


F n,n 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . G n,n


 ∗ . . . ∗

... . .
. ...

D⊗n . . . ∗


=⇒ D⊗nF n,n = Gn,nD⊗n.
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