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Signature Grids

Signature F : [q]n → C
Domain [q] := {0, 1, . . . , q − 1}
Arity n ≥ 0

e.g. q = 2, n = 3: F (x1, x2, x3) for Boolean variables x1, x2, x3.

Let F be a set of signatures (all on same domain).

F-grid Ω is a multigraph with a signature from F on each vertex.

Arity of signature equals degree of vertex.
Order incident edges counterclockwise.

F1

F2

F3 F4
Ω
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Holant Problems

F1

F2

F3 F4
Ω

Let Fv be the signature on vertex v .

Goal: compute the Holant value of Ω:

HolantF (Ω) =
∑

σ:E(Ω)→[q]

∏
v∈V (Ω)

Fv (σ(edges incident to v)).

Example: domain q = 2:

HolantF (Ω) = F1(1, 0) · F2(1, 1) · F3(0, 1, 1) · F4(1)+
. . .
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Example: Counting Perfect Matchings

EO2

EO2

EO3 EO1

Ω

0

1

EOn : {0, 1}n → {0, 1} – ExactOne signature.

EOn(x1, . . . , xn) = 1 iff exactly one xi = 1.

HolantEO(Ω) = EO2(1, 0) · EO2(1, 1) · EO3(0, 1, 1) · EO1(1)+

. . .

= 1 · 0 · 0 · 1+
. . .
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1

EOn : {0, 1}n → {0, 1} – ExactOne signature.
EOn(x1, . . . , xn) = 1 iff exactly one xi = 1.

HolantEO(Ω) = EO2(1, 0) · EO2(1, 1) · EO3(0, 1, 1) · EO1(1)+

EO2(1, 0) · EO2(1, 0) · EO3(0, 0, 1) · EO1(1)+

. . .

= 1 · 0 · 0 · 1 +
1 · 1 · 1 · 1 +

. . .
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Why study Holant?

Very expressive framework for counting problems.

But restrictive enough to admit complexity dichotomy theorems:

For any signature set F , HolantF is always either in P or #P-hard,
with nothing in between.

Broad dichotomies exist for F containing signatures that are

Domain q = 2, C-valued, symmetric (Cai, Guo, and Williams
[CGW16])

Domain q = 2, R-valued (Shao and Cai [SC20])

Domain q = 3, R-valued, symmetric Holant∗ (Cai and Ihm [CI25]).
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Gadgets

A gadget is a signature grid with dangling edges.

Here, signatures assembled into a 5-ary signature M.

a

b

x

y

z

a, b, x , y , z ∈ [q].

M(a, b, x , y , z) is the Holant value with dangling edges fixed to
a, b, x , y , z .
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Bipartite Holant and Signature Transformations

F |F ′ denotes a bipartite Holant problem.

Fi ∈ F is covariant (row vector)

F ′
i ∈ F

′ is contravariant (col vector)

F1

F2

F ′
1

F ′
2

F ′
3

Let T ∈ GLq and F ,F ′ on domain [q].

(T−1)⊗5

◦= FFT−1

T⊗5

◦ =F ′ TF ′

F T−1 and T F ′: simultaneous transformation by T .
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The Holant Theorem

Let F |F ′ and G | G′ be on the same domain [q].

Arity-respecting bijections F ↭ G and F ′ ↭ G′.

F1

F2

F ′
1

F ′
2

F ′
3

Ω
G1

G2

G ′
1

G ′
2

G ′
3

ΩF |F ′→G |G′↭

Definition

F |F ′ and G | G′ are Holant-indistinguishable if, for every F |F ′-grid Ω,

Holant(Ω) = Holant(ΩF |F ′→G |G′).

Theorem (The Holant Theorem [Val08])

If F |F ′ = G T−1|T G′, then F |F ′ and G | G′ are Holant-indistinguishable.
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The Holant Theorem

Theorem (The Holant Theorem [Val08])

If F |F ′ = G T−1|T G′, then F |F ′ and G | G′ are Holant-indistinguishable.

F1

F2

F ′
1

F ′
2

F ′
3

=
G1

G2

G ′
1

G ′
2

G ′
3

=
G1

G2

G ′
1

G ′
2

G ′
3

=
G1

G2

G ′
1

G ′
2

G ′
3

= T
= T−1

Xia conjectured the converse of the Holant theorem [Xia10].

Converse does not hold in general [CGW16].

Holds for R-valued F ,G and F ′ = G′ = {I}, get orthogonal T
[You25].

We prove two near-converses generalizing the orthogonal case.
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The Approximate Converse: Orbit Closure Intersection

Apply techniques from geometric invariant theory:

Definition

The GLq-orbit closure GLq(F |F ′) is the Euclidean closure of

GLq(F |F ′) = {(F T−1|T F) : T ∈ GLq}.

Theorem (Mumford, Fogarty, Kirwan [MFK94])

F |F ′ and G | G′ are indistinguishable under all GLq-invariant polynomials

iff GLq(F |F ′) and GLq(G | G′) intersect.

HolantΩ capture all GLq-invariant polynomials!

Theorem (The Approximate Converse)

F |F ′ and G | G′ are Holant-indistinguishable iff

GLq(F |F ′) and GLq(G | G′) intersect.
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The Conditional Converse: Quantum Nonvanishing

A quantum gadget is a formal linear combination of gadgets.

5 + 7
∈ F
∈ F ′

Definition

F |F ′ is quantum-nonvanishing if ∀ quantum F |F ′-gadget K ̸= 0,
∃ F |F ′-grid Ω containing K s.t. Holant(Ω) ̸= 0.

Example

F |F ′ = [ 1 i ] |
[
1
i

]
is quantum-vanishing because every F |F ′-grid has

value 0:

[ 1 i ] [ 1i ] = 1 · 1 + i · i = 0
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K ̸= 0
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The Conditional Converse: Quantum Nonvanishing

Theorem (The Conditional Converse)

If F |F ′ and G | G′ are Holant-indistinguishable & quantum-nonvanishing,
then there is a T ∈ GLq such that F |F ′ = G T−1|T G′.

Proof uses an invariant-theoretic characterization of quantum gadget
signatures (Derksen and Makam [DM23]).

FF′ ̸= 0

By Derksen and Makam’s theorem, can find a gadget with λ1 ̸= λ2.

Interpolate subdomain restrictors

[
1
1
0
0

]
and

[
0
0
1
1

]
.

Repeat on the subdomains.
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Counting Graph Homomorphisms with Bipartite Holant

ϕ : V (K )→ V (X ) is a graph homomorphism if it maps every edge
of K to an edge of X .

EQ = {=n| n ∈ N} where

(=n)(x1, . . . , xn) =

{
1 x1 = . . . = xn

0 otherwise

#hom(K ,X ) = Holant{AX }|EQ(Ω):

K X
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Counting Graph Homomorphisms with Bipartite Holant

ϕ : V (K )→ V (X ) is a graph homomorphism if it maps every edge
of K to an edge of X .

EQ = {=n| n ∈ N} where
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1
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Homomorphism Indistinguishability

Graphs X and Y are homomorphism-indistinguishable over G if
#hom(K ,X ) = #hom(K ,Y ) for every K ∈ G.

Theorem (Lovász [Lov67])

X and Y are isomorphic iff X and Y are homomorphism-indistinguishable
over all graphs.

Get relaxations of isomorphism for other G

e.g. trees, cycles, planar graphs, bounded tree/pathwidth, etc. [Sep24]

Roberson [Rob22] showed that graphs of degree ≤ d does not induce
isomorphism for any d ,

but the exact indistinguishability relation remained open.
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Homomorphisms from Graphs of Bounded Degree

Recall: #hom(·,X )←→ Holant{AX }|EQ.

K

=3 =2

=4=2 =1

∈ EQ
= AX

Ω

EQ≤d ⊂ EQ is equalities of arity ≤ d .
Holant{AX }|EQ≤d

counts homomorphisms from graphs of degree ≤ d .

Theorem (The Approximate Converse)

F |F ′ and G | G′ are Holant-indistinguishable iff

GLq(F |F ′) and GLq(G | G′) intersect.

Corollary

X and Y are homomorphism-indistinguishable over graphs of degree ≤ d
iff GLq({AX}| EQ≤d) and GLq({AY }| EQ≤d) intersect. This is decidable.
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Homomorphisms from Graphs of Bounded Degree

T EQ = EQ ⇐⇒ T is a permutation matrix.

Every =n is gadget-constructible from =2 and =3:

=3

=3

=3

=2

=2

= =5

T EQ≤3 = EQ≤3 ⇐⇒ T is a permutation matrix.
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Homomorphisms from Graphs of Bounded Degree

T EQ≤3 = EQ≤3 ⇐⇒ T is a permutation matrix.
Holant{AX }|EQ≤3

counts homomorphisms from graphs of degree ≤ 3.

Theorem (The Conditional Converse)

If F |F ′ and G | G′ are Holant-indistinguishable & quantum-nonvanishing,
then there is a T ∈ GLq such that F |F ′ = G T−1|T G′.

If AX is invertible, then {AX} | EQ≤3 is quantum-nonvanishing:

Apply Theorem to
{AX}| EQ≤3 and {AY }| EQ≤3.

Corollary

If AX ,AY are invertible,
then X and Y are
homomorphism-indistinguishable over
graphs of degree ≤ 3 iff X ∼= Y .

K
AX

AX

K
AX

AX

=2

=2

=2
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Thank you!
Questions?
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