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Signature Grids

Signature F : [q]n → R
Domain [q] := {0, 1, . . . , q − 1}
Arity n ≥ 0

e.g. q = 2, n = 3: F (x1, x2, x3) for Boolean variables x1, x2, x3.

Let F be a set of signatures (all on same domain).

F-grid Ω is a multigraph with a signature from F on each vertex

Arity of signature equals degree of vertex

F1

F2

F3 F4
Ω
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Holant Problems

F1

F2

F3 F4
Ω

0

1

Let Fv be the signature on vertex v .

Order edges incident to v counterclockwise.

Goal: compute the Holant value of Ω:

HolantF (Ω) =
∑

σ:E(Ω)→[q]

∏
v∈V (Ω)

Fv (σ(edges incident to v)).

Example: domain q = 2:

HolantF (Ω) = F1(1, 0) · F2(1, 1) · F3(0, 1, 1) · F4(1) + . . .
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Example: Counting Perfect Matchings

EO2

EO2

EO3 EO1

Ω

0

1

EOn : {0, 1}n → {0, 1} – ExactOne signature.

EOn(x1, . . . , xn) = 1 iff exactly one xi = 1.

HolantEO(Ω) = EO2(1, 0) · EO2(1, 1) · EO3(0, 1, 1) · EO1(1) + . . .

= 1 · 0 · 0 · 1 + . . .
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Example: Counting Perfect Matchings

EO2

EO2

EO3 EO1

Ω

0

1

EOn : {0, 1}n → {0, 1} – ExactOne signature.
EOn(x1, . . . , xn) = 1 iff exactly one xi = 1.

HolantEO(Ω) = EO2(1, 0) · EO2(1, 1) · EO3(0, 1, 1) · EO1(1)+

EO2(1, 0) · EO2(1, 0) · EO3(0, 0, 1) · EO1(1)+

. . .

= 1 · 0 · 0 · 1+
1 · 1 · 1 · 1 +

. . .
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Example: Counting Graph Homomorphisms

ϕ : V (K ) → V (X ) is a graph homomorphism if it maps every edge
of K to an edge of X .
EQ = {=n| n ∈ N} where

(=n)(x1, . . . , xn) =

{
1 x1 = . . . = xn

0 otherwise

(# homomorphisms K → X ) = Holant{AX }∪EQ(Ω):
Domain [q] = V (X ). Here q = 3.

K X
=3 =2

=2 =1=4

Ω

∈ EQ
= AX

1

0
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Why study Holant?

Very expressive framework for counting problems.

But restrictive enough to admit complexity dichotomy theorems:

For any signature set F (of a certain class), HolantF is always either
in P or #P-hard, with nothing in between.

Broad dichotomies exist for F containing signatures that are

Domain q = 2, C-valued, symmetric (Cai, Guo, and Williams
[CGW16])

Domain q = 2, R-valued (Shao and Cai [SC20])

Domain q = 3, R-valued, symmetric Holant∗ (Cai and Ihm [CI25]).
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Gadgets

A gadget is a signature grid with dangling edges.

Here, signatures assembled into a 5-ary signature M.

a

b

x

y

z

a, b, x , y , z ∈ [q].

M(a, b, x , y , z) is the Holant value with dangling edges fixed to
a, b, x , y , z .

Think of M as a 2q × 3q matrix.

8 / 18



Signature Transformations

Let H be invertible q × q matrix, F : [q]n → R.
Define HF : [q]n → R by applying H to each input of F :

H⊗5 F 5,0

◦ =

(HF )5,0

F HF

HF is F under basis H.

For signature set F , define H F := {HF | F ∈ F}.
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The Orthogonal Holant Theorem

Let F and G be signature sets on same domain [q].

Assume there is a bijection between F and G preserving arity.

F1

F2

F3 F4

Ω
G1

G2

G3 G4

ΩF→G

⇝

Definition

F and G are Holant-indistinguishable if, for every F-grid Ω,

Holant(Ω) = Holant(ΩF→G).

Theorem (The Orthogonal Holant Theorem)

If G = H F for orthogonal H, then F and G are Holant-indistinguishable.
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F1

F2

F3 F4
=

Ω

G1

G2

G3 G4

ΩF→G

=

=

=

F1

F2

F3

F4

=

G1

G2

G3

G4

F1

F2

F3

F4

(H⊤H)⊗8

F1

F2

F3

F4
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= = =

(H⊤)⊗6

H⊤H

H⊤H

H⊤H
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Main Result

Theorem (The Orthogonal Holant Theorem)

If G = H F for orthogonal H, then F and G are Holant-indistinguishable.

Special case of Valiant’s general Holant theorem. [Val08]

Holographic algorithms using the Holant theorem are the original
motivation for Holant problems.

Xia conjectured the converse of the Holant theorem [Xia10].

Converse does not hold in general [CGW16]

But we show it does in the orthogonal case:

Theorem (Main Result)

G = H F for orthogonal H iff F and G are Holant-indistinguishable.
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Very Rough Proof Sketch

Theorem (Main Result)

G = H F for orthogonal H iff F and G are Holant-indistinguishable.

Novel technique: proof by induction on q (the domain size).

1 ∃ some matrix H ̸= 0 (maybe not orthogonal) ‘transforming’ F to G.
Uses invariant-theoretic result of Schrijver [Sch08].

2 Let H = UTDV be SVD of H.

3 Transform F by V and G by U to replace H with diagonal D.

4 D = cI =⇒ D is orthogonal (up to scalar), and transforms F to G.

5 If D ̸= cI , then interpolate

[
I

0

]
from D.

6 Use

[
I

0

]
and I −

[
I

0

]
=

[
0

I

]
to break into two subdomains

and apply induction.
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Counting Indistinguishability

This is a counting indistinguishability theorem.

Many examples for counting homomorphisms to graphs X and Y .

Theorem (Lovász [Lov67])

X and Y are isomorphic iff X and Y are homomorphism-indistinguishable.

Theorem

HAX = AYH for some orthogonal H iff X and Y are
homomorphism-indistinguishable over all cycles.

Theorem (Combination of above and [DGR18])

HAX = AYH for some orthogonal pseudo-stochastic H iff X and Y are
homomorphism-indistinguishable over all cycles and paths.

These all follow from our main result.

Get a sharper version of Lovász’ theorem:
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Counting Indistinguishability Theorems

Theorem (Lovász [Lov67])

X and Y are isomorphic iff X and Y are homomorphism-indistinguishable.

Theorem

X and Y are isomorphic iff X and Y are homomorphism-indistinguishable
over even-degree graphs.

Recall: Holant{AX }∪EQ counts homomorphisms to X .

Similarly, Holant{AY }∪EQ counts homomorphisms to Y .

By our theorem, ∃H s.t. H{AX} = {AY } and H EQ = EQ.

H EQ = EQ ⇐⇒ H is a permutation matrix.

Let EQ2 ⊂ EQ be the signatures of even arity.

Holant{AX }∪EQ2
: homomorphisms from even-degree graphs to X .

H EQ2 = EQ2 ⇐⇒ H is a signed permutation matrix.

Signed isomorphism ⇐⇒ isomorphism (AX and AY are unsigned).
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Generalized Equality Signatures

E ∈ GEQ: E (x1, . . . , xn) = 0 unless x1 = . . . = xn.

Every connected GEQ-gadget has a signature in GEQ:

0

0

0

0

1
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Odeco Signature Sets

Every connected GEQ-gadget has a signature in GEQ
Every connected GEQ-gadget has a symmetric signature.

We show GEQ is the only signature set with this ↑ property:

(up to orthogonal transformation)

Definition

F is odeco if ∃ orthogonal H such that H F ⊂ GEQ.

Theorem

F is odeco ⇐⇒ every connected F-gadget has a symmetric signature.

Extends characterization of [Rob16, BDHR17] from a single tensor to
a set.
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Thank you!
Questions?
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