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Graph isomorphism game

Nonlocal game introduced in [AMRSSV’19]

Players Alice and Bob cooperate to convince a referee that graphs X
and Y are isomorphic.

They are separated without communication.

Alice gets a vertex of X or Y , responds with a vertex of other graph.

Bob gets a vertex of X or Y , responds with a vertex of other graph.

Players win if the two X vertices and the two Y vertices have the
same relationship (equal, adjacent, or non-adjacent).

X ∼= Y ⇐⇒ the players have a perfect winning strategy.
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Quantum graph isomorphism game

Quantum strategy: Alice and Bob can measure a shared entangled
quantum state after receiving their inputs.

Can choose quantum state ahead of time, but still can’t communicate
during game.

X and Y are quantum isomorphic (X ∼=qc Y ) if Alice and Bob have a
perfect quantum winning strategy.

There exist X ,Y such that X ∼=qc Y but X ̸∼= Y ! [AMRSSV’19]
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Graph Homomorphism

A mapping ϕ : V (X ) → V (Y ) is a graph homomorphism if it preserves
adjacency: {u, v} ∈ E (X ) =⇒ {ϕ(u), ϕ(v)} ∈ E (Y ).

(i.e., Edges are mapped to edges)

→
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Homomorphism Theorems

Let hom(G ,X ) be the number of graph homomorphisms from G to X .

Theorem (Lovász’67)

X ∼= Y iff [ hom(G ,X ) = hom(G ,Y ) ∀ graph G ].

Theorem (Mančinska-Roberson’20)

X ∼=qc Y iff [ hom(G ,X ) = hom(G ,Y ) ∀ planar graph G ] .

What is the connection between planarity and quantum nonlocal games?
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Quantum permutation matrices

X ∼= Y iff there is a permutation matrix P s.t. PAXP
−1 = AY .

A quantum permutation matrix is an abstract relaxation of a
permutation matrix.

Entries come from a noncommutative C ∗-algebra, but

Rows and columns still add up to 1

Product of distinct elements in same row or column in 0

Theorem (Lupini-Mančinska-Roberson’17)

X ∼=qc Y iff there is a quantum permutation matrix U s.t. UAXU−1 = AY .
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Higher dimension

Let aX , aY be vectorized versions of AX ,AY

Stack rows on top of each other

X ∼= Y ⇐⇒ PAXP
−1 = AY ⇐⇒ P⊗2aX = aY

Naturally extends to higher dimensions n > 2:

AX : V (X )2 → {0, 1} and AY : V (Y )2 → {0, 1}
Functions on n = 2 inputs.

F : V (F )n → R and G : V (G )n → R – constraint functions.
Vectorize as f , g .

F ∼= G if there is a permutation matrix P s.t. P⊗nf = g .

F ∼=qc G if there is a quantum permutation matrix U s.t. U⊗nf = g .
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The partition function

G Recall: hom(G ,X ) is the number of maps
ϕ : V (G ) → V (X ) that send every edge of
G to an edge of X .

= AX
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The partition function

G Recall: hom(G ,X ) is the number of maps
ϕ : V (G ) → V (X ) that send every edge of
G to an edge of X .

= AX

δ(■)

For each ■, let δ(■) be the two adjacent •
vertices.

Then AX (ϕ(δ(■))) = 1 if ϕ maps ■’s edge
to an edge of X , and = 0 otherwise.

hom(G ,X ) =
∑

ϕ:{•}→V (X )

∏
■

AX (ϕ(δ(■))).

(product is 1 iff ϕ maps every edge of G to
an edge of X ).
■ are constraints • are variables
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#CSP: higher-dimensional graph homomorphism

AX 2-dimensional, so ■ vertices have degree 2 (|δ(■)| = 2)

For n-dimensional F , ■ vertices have degree n (|δ(■)| = n).

Signature grid K.

Example: n = 3

= F

K
hom(G ,X ) =

∑
ϕ:{•}→V (X )

∏
■

AX (ϕ(δ(■))).

#CSP(K,F ) =
∑

ϕ:{•}→V (F )

∏
■

F (ϕ(δ(■))).

Theorem (Mančinska-Roberson’20)

X ∼=qc Y iff hom(G ,X ) = hom(G ,Y ) ∀ planar graph G.

Theorem (Cai-Y.’23)

F ∼=qc G iff #CSP(K,F ) = #CSP(K,G ) ∀ planar signature grid K.
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Why study (planar) #CSP?

Beautiful complexity dichotomy theorems

Theorem (Cai-Chen’17)

For any finite set F of C-valued constraint functions, #CSP(·,F) is
always either in P or #P-hard, with nothing in between.

Theorem (Cai-Fu’19)

For any set F of C-valued constraint functions over Boolean variables,
#CSP(·,F) is exactly one of the following:

1 P-time solvable;

2 P-time solvable over planar graphs but #P-hard over general graphs;

3 #P-hard over planar graphs.
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Theorem (Cai-Y.’23)

F ∼=qc G iff #CSP(K,F ) = #CSP(K,G ) ∀ planar signature grid K.
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Gadgets

A gadget is a signature grid with dangling edges.

Several constraint functions assembled into a new function.

Inputs along dangling edges.
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Gadgets and signature matrices

a

b

x

y

z

K

a, b, x , y , z ∈ V (F )

|V (F )|2 × |V (F )|3 signature matrix M(K).

M(K)ab,xyz =
∑

ϕ:{•}→V (F )
ϕ(•,•)=(a,b)

ϕ(•,•,•)=(x ,y ,z)

∏
■

F (ϕ(δ(■))).
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Gadget operations

K

L

K⊗ L
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Gadget operations

K

L

K ◦ L
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Gadget operations

K

L

L†
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Gadgets operations

Gadget operations correspond to signature matrix operations:

M(K⊗ L) = M(K)⊗M(L)
M(K ◦ L) = M(K)M(L)
M(K†) = M(K)†
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Why planarity? – the planar gadget decomposition

Can decompose any planar gadget into a chain of simple gadgets
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A quantum holographic transformation

Recall our main theorem:

Theorem (Cai-Y.’23)

F ∼=qc G iff #CSP(K,F ) = #CSP(K,G ) ∀ planar K.

Suppose F ∼=qc G , so U⊗nf = g for quantum permutation matrix U .
Prove ( =⇒ ) via a holographic transformation using U .
View U itself as a constraint function in the signature grid.
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A quantum holographic transformation

The planar gadget decomposition converts K to a composition of building
block gadgets (expressing #CSP(K,F ) as a matrix product).
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A quantum holographic transformation

Insert (U⊗ri )−1U⊗ri = I between the ith and (i + 1)st factors (preserves
#CSP(K,F ) value).
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A quantum holographic transformation

Reassociate. Now, U⊗nf = g ⇐⇒ U⊗mM(F )(U⊗n−m)−1 = M(G ) and U
doesn’t affect • vertices, so...
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A quantum holographic transformation

Every F is converted to G without changing the #CSP value:
#CSP(K,F ) = #CSP(K,G ).
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A quantum holographic transformation

Can’t view U as a constraint function in general (nonplanar) signature
grids because entries of U don’t commute.

#CSP value is a sum of products of constraint function evaluations.

Planar gadget decomposition gives order of vertices

hence multiplication order of U entries.
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The quantum automorphism group and its intertwiners

Theorem (Cai-Y.’23)

F ∼=qc G iff #CSP(K,F ) = #CSP(K,G ) ∀ planar K.

Next, prove (⇐). Apply quantum group theory:

Definition

Quantum permutation matrix U s.t. U⊗nf = f defines the quantum
automorphism group Qut(F ) of F .

Recall U⊗nf = g defined quantum isomorphism of F and G .

Instead of studying Qut(F ) directly, study its intertwiner space of
matrices M invariant under U .

U⊗mM(U⊗d)−1 = M

F itself is invariant under U .
Suggests that Qut(F )’s intertwiner space is composed of #CSP(·,F )
gadget signature matrices.
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Building block gadgets

Theorem

The set of all planar #CSP(·,F ) gadgets is exactly ⟨E1,0,E1,2,Fn,0⟩◦,⊗,†.

F

E1,0 E1,2 Fn,0

Follows from the earlier planar gadget decomposition.
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Characterization of the intertwiners

Proved combinatorially:

Theorem

The set of all planar #CSP(·,F ) gadgets is exactly ⟨E1,0,E1,2,Fn,0⟩◦,⊗,†.

Proved using quantum group theory:

Theorem

The intertwiners of Qut(F ) are exactly

span(⟨M(E1,0),M(E1,2),M(Fn,0)⟩◦,⊗,†).

intertwiners of Qut(F )

↕

span(signature matrices of planar #CSP(·,F ) gadgets)
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The converse

Connection between Qut(F ) and gadget signature matrices ⇝ more
quantum group theory!

Analogues of techniques from classical graph isomorphism:

Orbits of Qut(F )

Make F and G ‘connected’ by adding a ‘universal vertex’.

Disjoint union F ⊕ G of two constraint functions F and G .

If there is some x ∈ V (F ), y ∈ V (G ) in the same orbit of
Qut(F ⊕ G ), then F ∼=qc G .
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Future work

#CSP(·,F) ↔ Holant(F ∪EQ)

For quantum orthogonal O: O · EQ = EQ ⇐⇒ O is a quantum
permutation matrix.

(orthogonal) Holant theorem: for orthogonal H,

HolantΩ(H F) = HolantΩ(F) on every signature grid Ω

Our proof shows: for quantum orthogonal O,

HolantΩ(OF) = HolantΩ(F) on every planar signature grid Ω

Conjecture

If HolantΩ(F) = HolantΩ(G) on every planar signature grid Ω, then there
is a quantum orthogonal O s.t. OF = G
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Thank you!
Questions?
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