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Graph isomorphism game

@ Nonlocal game introduced in [AMRSSV'19]

Players Alice and Bob cooperate to convince a referee that graphs X
and Y are isomorphic.

They are separated without communication.
Alice gets a vertex of X or Y, responds with a vertex of other graph.

Bob gets a vertex of X or Y, responds with a vertex of other graph.

Players win if the two X vertices and the two Y vertices have the
same relationship (equal, adjacent, or non-adjacent).

@ X 2Y <= the players have a perfect winning strategy.
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@ Quantum strategy: Alice and Bob can measure a shared entangled

quantum state after receiving their inputs.

't communicate

but still can

o Can choose quantum state ahead of time,

during game.

if Alice and Bob have a

)

g Y

>

@ X and Y are quantum isomorphic (X

perfect quantum winning strategy.
@ There exist X, Y such that X

Y but X % Y! [AMRSSV'19]
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Graph Homomorphism

A mapping ¢ : V(X) — V(Y) is a graph homomorphism if it preserves
adjacency: {u,v} € E(X) = {¢(u),d(v)} € E(Y).

(i.e., Edges are mapped to edges)
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Homomorphism Theorems

Let hom(G, X) be the number of graph homomorphisms from G to X.

Theorem (Lovasz’67)

X 2 Y iff [ hom(G, X) = hom(G, Y) V graph G].

Theorem (Manéinska-Roberson’20)

X Zgc Y iff [ hom(G, X) = hom(G, Y) V planar graph G] .

What is the connection between planarity and quantum nonlocal games?
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Quantum permutation matrices

@ X = Y iff there is a permutation matrix P s.t. PAxP~1 = Ay.

A quantum permutation matrix is an abstract relaxation of a
permutation matrix.

@ Entries come from a noncommutative C*-algebra, but
@ Rows and columns still add up to 1

@ Product of distinct elements in same row or column in 0

Theorem (Lupini-Mantinska-Roberson’17)

X 2, Y iff there is a quantum permutation matrix U s.t. UAxU ™1 = Ay.

6/31



Higher dimension

@ Let ax, ay be vectorized versions of Ax, Ay
o Stack rows on top of each other

e XY — PAprl =Ay P®2ax = ay
Naturally extends to higher dimensions n > 2:

o Ax : V(X)? = {0,1} and Ay : V(Y)? — {0,1}
o Functions on n = 2 inputs.

e F:V(F)" - Rand G: V(G)" — R — constraint functions.
o Vectorize as f, g.

@ F = G if there is a permutation matrix P s.t. P9"f = g.

@ F 2, G if there is a quantum permutation matrix U s.t. U®"f = g.
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The partition function

G Recall: hom(G, X) is the number of maps
¢ : V(G) — V(X) that send every edge of
G to an edge of X.

I:AX
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The partition function

Recall: hom(G, X) is the number of maps
¢ : V(G) = V(X) that send every edge of
G to an edge of X.

For each W, let /(M) be the two adjacent e
vertices.

Then Ax(¢(6(M))) = 1 if ¢ maps W's edge
to an edge of X, and = 0 otherwise.

hom(G,X)= ) HAX (5(m)))

p:{e}—=V(X)

(product is 1 iff ¢ maps every edge of G to
an edge of X).

M are constraints e are variables
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#CSP: higher-dimensional graph homomorphism

o Signature grid K.

Example: n =3 hom(G, X) = Z HAX(¢(5(I))).
¢:{e}—V(X) W

#CSP(K, F) = > H F(¢

p:{®}—=V(F)

Theorem (Mantinska-Roberson’20)
X Zqc Y iff hom(G, X) = hom(G, Y) ¥ planar graph G.

Theorem (Cai-Y.’23)

F =4 G iff #CSP(K, F) = #CSP(K, G) V planar signature grid K.
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Why study (planar) #CSP?

@ Beautiful complexity dichotomy theorems

Theorem (Cai-Chen’17)

For any finite set F of C-valued constraint functions, #CSP(-,F) is
always either in P or #P-hard, with nothing in between.

Theorem (Cai-Fu’19)

For any set F of C-valued constraint functions over Boolean variables,
#CSP(-, F) is exactly one of the following:

@ P-time solvable;
© P-time solvable over planar graphs but #P-hard over general graphs;

© #P-hard over planar graphs.
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Theorem (Cai-Y.’23)

F =4 G iff #CSP(K, F) = #CSP(K, G) V planar signature grid K.
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Gadgets

@ A gadget is a signature grid with dangling edges.
@ Several constraint functions assembled into a new function.

@ Inputs along dangling edges.
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Gadgets and signature matrices

K
X
a
y
b
z

@ a,b,x,y,ze V(F)
o |V(F)|? x |V(F)|? signature matrix M(K).

MKtz = > ] Fe(s(m))).

s{o}sV(F) ®m
¢(.7.):(avb)
d)(.v.v'):(x»)’vz)
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Gadget operations
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Gadget operations

A e

Kol
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Gadget operations

B
o
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Gadgets operations

o Gadget operations correspond to signature matrix operations:
e M(K®L)=M(K)® M(L)
o M(KoL)=M(K)M(L)
o M(K') = M(K)T
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Why planarity? — the planar gadget decomposition

@ Can decompose any planar gadget into a chain of simple gadgets
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A quantum holographic transformation

Recall our main theorem:

Theorem (Cai-Y.’23)

F =~ G iff #CSP(K, F) = #CSP(K, G) ¥ planar K.

@ Suppose F 24 G, so U®"f = g for quantum permutation matrix U.
@ Prove ( = ) via a holographic transformation using U.

@ View U itself as a constraint function in the signature grid.
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A quantum holographic transformation

The planar gadget decomposition converts K to a composition of building
block gadgets (expressing #CSP(K, F) as a matrix product).
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A quantum holographic transformation
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Insert (U®7)1U" = | between the ith and (i + 1)st factors (preserves
#CSP(K, F) value).
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A quantum holographic transformation
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Reassociate. Now, U®"f = g <= UCTM(F)U®"~™)"L = M(G) and U
doesn't affect e vertices, so...
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A quantum holographic transformation

Every F is converted to G without changing the #CSP value:
#CSP(K, F) = #CSP(K, G).
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A quantum holographic transformation

@ Can't view U as a constraint function in general (nonplanar) signature
grids because entries of U don't commute.

o #CSP value is a sum of products of constraint function evaluations.
@ Planar gadget decomposition gives order of vertices
o hence multiplication order of U entries.
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The quantum automorphism group and its intertwiners

Theorem (Cai-Y.’23)
F =4 G iff #CSP(K, F) = #CSP(K, G) V planar K.

@ Next, prove (<). Apply quantum group theory:

Definition

Quantum permutation matrix U s.t. U®"f = f defines the quantum
automorphism group Qut(F) of F.

@ Recall U®"f = g defined quantum isomorphism of F and G.
@ Instead of studying Qut(F) directly, study its intertwiner space of
matrices M invariant under .
o USTMUE) L = M
@ F itself is invariant under U.

o Suggests that Qut(F)'s intertwiner space is composed of #CSP(-, F)
gadget signature matrices.
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Building block gadgets

The set of all planar #CSP(-, F) gadgets is exactly (EX%, EM2 F™0), ¢ ..

El,o E1,2 Fn,O

. §

Follows from the earlier planar gadget decomposition.
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Characterization of the intertwiners

Proved combinatorially:

The set of all planar #CSP(-, F) gadgets is exactly (E}9, E»?, F"’0>o7®,1.

Proved using quantum group theory:

The intertwiners of Qut(F) are exactly

span({M(E®), M(E'?), M(F™®))o, ).

intertwiners of Qut(F)

!

span(signature matrices of planar #CSP(-, F) gadgets)
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The converse

Connection between Qut(F) and gadget signature matrices ~» more
quantum group theory!

@ Analogues of techniques from classical graph isomorphism:

@ Orbits of Qut(F)

@ Make F and G ‘connected’ by adding a ‘universal vertex'.
@ Disjoint union F & G of two constraint functions F and G.
°

If there is some x € V(F), y € V(G) in the same orbit of
Qut(F @ G), then F =4 G.

29/31



@ #CSP(-, F) + Holant(FUEQ)

@ For quantum orthogonal O: O -£9Q =809 <= O is a quantum
permutation matrix.

o (orthogonal) Holant theorem: for orthogonal H,
Holantq(H F) = Holantq(F) on every signature grid Q
@ Our proof shows: for quantum orthogonal O,

Holantq (O F) = Holantq(F) on every planar signature grid Q2

If Holantq(F) = Holantg(G) on every planar signature grid €, then there
is a quantum orthogonal O s.t. O F =@
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Thank you!
Questions?
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