Planar #CSP Equality Corresponds to Quantum Isomorphism - A Holant Viewpoint

Jin-Yi Cai and Ben Young

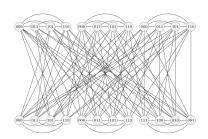
University of Wisconsin, Madison

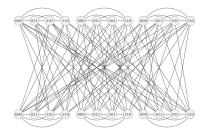
Graph isomorphism game

- Nonlocal game introduced in [AMRSSV'19]
- Players Alice and Bob cooperate to convince a referee that graphs X and Y are isomorphic.
- They are separated without communication.
- Alice gets a vertex of X or Y, responds with a vertex of other graph.
- ullet Bob gets a vertex of X or Y, responds with a vertex of other graph.
- Players win if the two X vertices and the two Y vertices have the same relationship (equal, adjacent, or non-adjacent).
- $X \cong Y \iff$ the players have a perfect winning strategy.

Quantum graph isomorphism game

- Quantum strategy: Alice and Bob can measure a shared entangled quantum state after receiving their inputs.
 - Can choose quantum state ahead of time, but still can't communicate during game.
- X and Y are quantum isomorphic ($X \cong_{qc} Y$) if Alice and Bob have a perfect quantum winning strategy.
- There exist X, Y such that $X \cong_{qc} Y$ but $X \not\cong Y$! [AMRSSV'19]

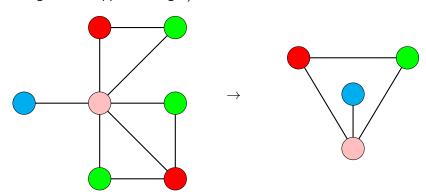




Graph Homomorphism

A mapping $\phi: V(X) \to V(Y)$ is a graph homomorphism if it preserves adjacency: $\{u, v\} \in E(X) \Longrightarrow \{\phi(u), \phi(v)\} \in E(Y)$.

(i.e., Edges are mapped to edges)



Homomorphism Theorems

Let hom(G, X) be the number of graph homomorphisms from G to X.

Theorem (Lovász'67)

$$X \cong Y \text{ iff } [\text{hom}(G, X) = \text{hom}(G, Y) \forall \text{ graph } G].$$

Theorem (Mančinska-Roberson'20)

$$X \cong_{qc} Y \text{ iff } [hom(G, X) = hom(G, Y) \forall planar graph G].$$

What is the connection between planarity and quantum nonlocal games?

Quantum permutation matrices

• $X \cong Y$ iff there is a permutation matrix P s.t. $PA_XP^{-1} = A_Y$.

A **quantum permutation matrix** is an abstract relaxation of a permutation matrix.

- Entries come from a noncommutative C*-algebra, but
- Rows and columns still add up to 1
- Product of distinct elements in same row or column in 0

Theorem (Lupini-Mančinska-Roberson'17)

 $X\cong_{qc}Y$ iff there is a quantum permutation matrix $\mathcal U$ s.t. $\mathcal UA_X\mathcal U^{-1}=A_Y$.

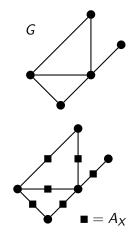
Higher dimension

- Let a_X, a_Y be vectorized versions of A_X, A_Y
 - Stack rows on top of each other
- $X \cong Y \iff PA_XP^{-1} = A_Y \iff P^{\otimes 2}a_X = a_Y$

Naturally extends to higher dimensions n > 2:

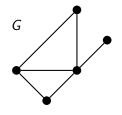
- $A_X: V(X)^2 \to \{0,1\}$ and $A_Y: V(Y)^2 \to \{0,1\}$
 - Functions on n = 2 inputs.
- $F: V(F)^n \to \mathbb{R}$ and $G: V(G)^n \to \mathbb{R}$ constraint functions.
 - Vectorize as f, g.
- $F \cong G$ if there is a permutation matrix P s.t. $P^{\otimes n}f = g$.
- ullet $F\cong_{qc} G$ if there is a quantum permutation matrix $\mathcal U$ s.t. $\mathcal U^{\otimes n}f=g$.

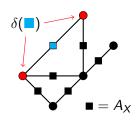
The partition function



Recall: hom(G, X) is the number of maps $\phi: V(G) \to V(X)$ that send every edge of G to an edge of X.

The partition function





Recall: hom(G, X) is the number of maps $\phi: V(G) \to V(X)$ that send every edge of G to an edge of X.

For each \blacksquare , let $\delta(\blacksquare)$ be the two adjacent \bullet vertices.

Then $A_X(\phi(\delta(\blacksquare))) = 1$ if ϕ maps \blacksquare 's edge to an edge of X, and = 0 otherwise.

$$\mathsf{hom}(G,X) = \sum_{\phi: \{ullet\} \to V(X)} \prod_{\blacksquare} A_X(\phi(\delta(\blacksquare))).$$

(product is 1 iff ϕ maps every edge of G to an edge of X).

are constraints

• are variables

#CSP: higher-dimensional graph homomorphism

- A_X 2-dimensional, so \blacksquare vertices have degree 2 $(|\delta(\blacksquare)| = 2)$
- For *n*-dimensional F, \blacksquare vertices have degree n ($|\delta(\blacksquare)| = n$).
- Signature grid **K**.

Example: n = 3

$$\mathsf{hom}(G,X) = \sum_{\phi: \{\bullet\} \to V(X)} \prod_{\blacksquare} A_X(\phi(\delta(\blacksquare))).$$

$$\#\mathsf{CSP}(\mathsf{K},F) = \sum_{\phi: \{\bullet\} \to V(F)} \prod_{\blacksquare} F(\phi(\delta(\blacksquare))).$$

Theorem (Mančinska-Roberson'20)

 $X \cong_{qc} Y \text{ iff } hom(G, X) = hom(G, Y) \forall planar graph G.$

Theorem (Cai-Y.'23)

 $F\cong_{qc} G$ iff $\#CSP(\mathbf{K},F)=\#CSP(\mathbf{K},G)\ \forall$ planar signature grid \mathbf{K} .

Why study (planar) #CSP?

Beautiful complexity dichotomy theorems

Theorem (Cai-Chen'17)

For any finite set \mathcal{F} of \mathbb{C} -valued constraint functions, $\#CSP(\cdot, \mathcal{F})$ is always either in P or #P-hard, with nothing in between.

Theorem (Cai-Fu'19)

For any set \mathcal{F} of \mathbb{C} -valued constraint functions over Boolean variables, $\#CSP(\cdot, \mathcal{F})$ is exactly one of the following:

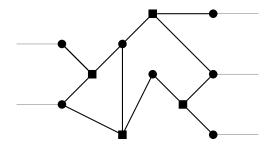
- P-time solvable;
- 2 P-time solvable over planar graphs but #P-hard over general graphs;
- 3 #P-hard over planar graphs.

Theorem (Cai-Y.'23)

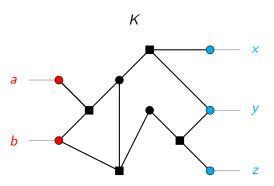
 $F \cong_{qc} G$ iff $\#CSP(\mathbf{K}, F) = \#CSP(\mathbf{K}, G) \ \forall$ planar signature grid \mathbf{K} .

Gadgets

- A gadget is a signature grid with dangling edges.
- Several constraint functions assembled into a new function.
- Inputs along dangling edges.



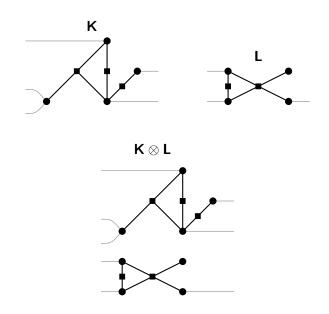
Gadgets and signature matrices



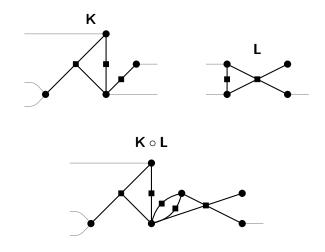
- $a, b, x, y, z \in V(F)$
- $|V(F)|^2 \times |V(F)|^3$ signature matrix $M(\mathbf{K})$.

$$M(\mathbf{K})_{ab, \times yz} = \sum_{\substack{\phi: \{\bullet\} \to V(F) \\ \phi(\bullet, \bullet) = (a, b) \\ \phi(\bullet, \bullet, \bullet) = (\times, y, z)}} \prod_{\blacksquare} F(\phi(\delta(\blacksquare))).$$

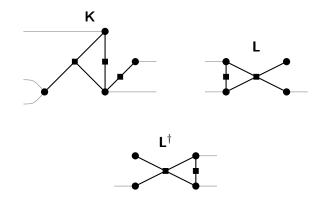
Gadget operations



Gadget operations



Gadget operations

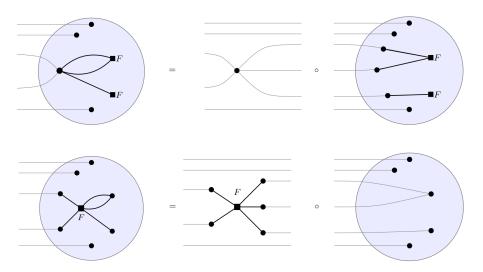


Gadgets operations

- Gadget operations correspond to signature matrix operations:
 - $M(K \otimes L) = M(K) \otimes M(L)$
 - $M(K \circ L) = M(K)M(L)$
 - $M(\mathbf{K}^{\dagger}) = M(\mathbf{K})^{\dagger}$

Why planarity? - the planar gadget decomposition

• Can decompose any planar gadget into a chain of simple gadgets

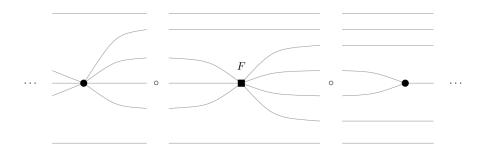


Recall our main theorem:

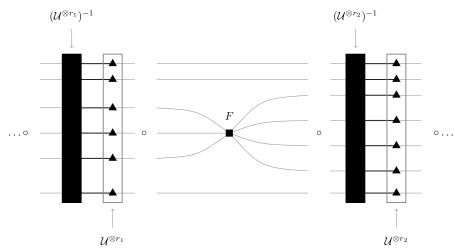
Theorem (Cai-Y.'23)

 $F \cong_{qc} G \text{ iff } \# CSP(\mathbf{K}, F) = \# CSP(\mathbf{K}, G) \ \forall \text{ planar } \mathbf{K}.$

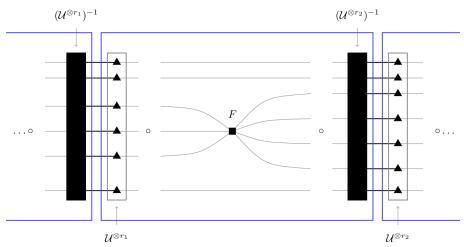
- Suppose $F\cong_{qc} G$, so $\mathcal{U}^{\otimes n}f=g$ for quantum permutation matrix \mathcal{U} .
- Prove (\Longrightarrow) via a holographic transformation using \mathcal{U} .
- ullet View ${\cal U}$ itself as a constraint function in the signature grid.



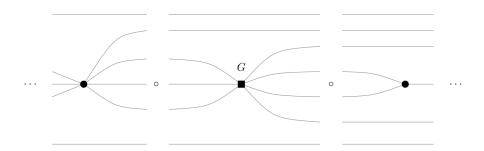
The planar gadget decomposition converts K to a composition of building block gadgets (expressing #CSP(K, F) as a matrix product).



Insert $(\mathcal{U}^{\otimes r_i})^{-1}\mathcal{U}^{\otimes r_i}=I$ between the ith and (i+1)st factors (preserves $\#\mathsf{CSP}(\mathbf{K},F)$ value).



Reassociate. Now, $\mathcal{U}^{\otimes n}f = g \iff \mathcal{U}^{\otimes m}M(F)(\mathcal{U}^{\otimes n-m})^{-1} = M(G)$ and \mathcal{U} doesn't affect \bullet vertices, so...



Every F is converted to G without changing the $\#CSP(\mathbf{K}, F) = \#CSP(\mathbf{K}, G)$.

- Can't view $\mathcal U$ as a constraint function in general (nonplanar) signature grids because entries of $\mathcal U$ don't commute.
 - #CSP value is a sum of products of constraint function evaluations.
- Planar gadget decomposition gives order of vertices
 - ullet hence multiplication order of ${\cal U}$ entries.

The quantum automorphism group and its intertwiners

Theorem (Cai-Y.'23)

$$F \cong_{qc} G \text{ iff } \# CSP(\mathbf{K}, F) = \# CSP(\mathbf{K}, G) \ \forall \text{ planar } \mathbf{K}.$$

Next, prove (⇐). Apply quantum group theory:

Definition

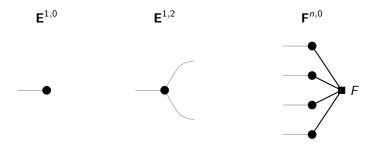
Quantum permutation matrix $\mathcal U$ s.t. $\mathcal U^{\otimes n}f=f$ defines the *quantum* automorphism group $\operatorname{Qut}(F)$ of F.

- Recall $\mathcal{U}^{\otimes n}f = g$ defined quantum isomorphism of F and G.
- Instead of studying Qut(F) directly, study its **intertwiner space** of matrices M invariant under U.
 - $\mathcal{U}^{\otimes m}M(\mathcal{U}^{\otimes d})^{-1}=M$
- F itself is invariant under \mathcal{U} .
 - Suggests that Qut(F)'s intertwiner space is composed of $\#CSP(\cdot, F)$ gadget signature matrices.

Building block gadgets

Theorem

The set of all planar $\#CSP(\cdot, F)$ gadgets is exactly $\langle \mathbf{E}^{1,0}, \mathbf{E}^{1,2}, \mathbf{F}^{n,0} \rangle_{\circ, \otimes, \uparrow}$.



Follows from the earlier planar gadget decomposition.

Characterization of the intertwiners

Proved combinatorially:

Theorem

The set of all planar $\#CSP(\cdot, F)$ gadgets is exactly $\langle \mathbf{E}^{1,0}, \mathbf{E}^{1,2}, \mathbf{F}^{n,0} \rangle_{\circ, \otimes, \dagger}$.

Proved using quantum group theory:

Theorem

The intertwiners of Qut(F) are exactly

$$\mathsf{span}(\langle M(\mathsf{E}^{1,0}), M(\mathsf{E}^{1,2}), M(\mathsf{F}^{n,0}) \rangle_{\circ,\otimes,\dagger}).$$

intertwiners of Qut(F)

span(signature matrices of planar $\#CSP(\cdot, F)$ gadgets)

The converse

- Analogues of techniques from classical graph isomorphism:
- Orbits of Qut(F)
- Make F and G 'connected' by adding a 'universal vertex'.
- Disjoint union $F \oplus G$ of two constraint functions F and G.
- If there is some $x \in V(F)$, $y \in V(G)$ in the same orbit of $Qut(F \oplus G)$, then $F \cong_{qc} G$.

Future work

- $\#\mathsf{CSP}(\cdot,\mathcal{F}) \leftrightarrow \mathsf{Holant}(\mathcal{F} \cup \mathcal{EQ})$
- For quantum **orthogonal** \mathcal{O} : $\mathcal{O} \cdot \mathcal{E} \mathcal{Q} = \mathcal{E} \mathcal{Q} \iff \mathcal{O}$ is a quantum permutation matrix.
- (orthogonal) Holant theorem: for orthogonal H,

$$\mathsf{Holant}_\Omega(\mathcal{H}\,\mathcal{F}) = \mathsf{Holant}_\Omega(\mathcal{F})$$
 on every signature grid Ω

ullet Our proof shows: for **quantum** orthogonal \mathcal{O} ,

$$\mathsf{Holant}_\Omega(\mathcal{OF}) = \mathsf{Holant}_\Omega(\mathcal{F})$$
 on every **planar** signature grid Ω

Conjecture

If $\mathsf{Holant}_\Omega(\mathcal{F}) = \mathsf{Holant}_\Omega(\mathcal{G})$ on every planar signature grid Ω , then there is a quantum orthogonal \mathcal{O} s.t. $\mathcal{O}\,\mathcal{F} = \mathcal{G}$

Thank you! Questions?