
General and Planar #CSP Equality Corresponds
to Classical and Quantum Isomorphism

Ben Young and Jin-Yi Cai

University of Wisconsin-Madison

November 9, 2023

1 / 42

Graph Homomorphism

A mapping ϕ : V (K) → V (G) is a graph homomorphism if it maps all
edges to edges: {u, v} ∈ E (K) =⇒ {ϕ(u), ϕ(v)} ∈ E (G).

K

G

2 / 42

Graph Homomorphism

A mapping ϕ : V (K) → V (G) is a graph homomorphism if it maps all
edges to edges: {u, v} ∈ E (K) =⇒ {ϕ(u), ϕ(v)} ∈ E (G).

K

→

G

3 / 42

Homomorphism Invariance Determines Isomorphism

Let hom(K ,G) be the number of graph homomorphisms from K to G .

Theorem (Lovász’67)

G ∼= H iff [hom(K ,G) = hom(K ,H) ∀ graph K].

Goal: Extend this theorem to #CSP.

4 / 42

The partition function for graph homomorphism

hom(K ,G) =
∑

ϕ:V (K)→V (G)

1ϕ is a homomorphism K→G

=
∑

ϕ:V (K)→V (G)

∏
(u,v)∈E(K)

1(ϕ(u),ϕ(v))∈E(G)

=
∑

ϕ:V (K)→V (G)

∏
(u,v)∈E(K)

AG (ϕ(u), ϕ(v))

AG is adjacency matrix of G .

5 / 42

#CSP

Counting graph homomorphisms is a counting constraint satisfation
problem (#CSP).

F is a constraint function on domain D(F).
F of arity n is map F : D(F)n → R

#CSP(·,F) input is instance K = (X ,C)
X is set of variables
(xi1 , . . . , xin) ∈ C is a constraint applying F to variables xi1 , . . . , xin .

#CSP((X ,C),F) =
∑

ϕ:X→D(F)

∏
(xi1 ,...,xin)∈C

F (ϕ(xi1), . . . , ϕ(xin)).

hom(K ,G) has variable set X = V (K), domain D(F) = V (G), constraint
set C = E (K), and constraint function F = AG .

hom(K ,G) =
∑

ϕ:V (K)→V (G)

∏
(u,v)∈E(K)

AG (ϕ(u), ϕ(v))

= #CSP
((
V (K),E (K)

)
,AG

)
.

6 / 42

Why study #CSP?

Beautiful complexity dichotomy theorems

Theorem (Cai-Chen’17)

For any finite set F of C-valued constraint functions, #CSP(·,F) is
always either in P or #P-hard, with nothing in between.

Theorem (Cai-Fu’19)

For any set F of C-valued constraint functions over Boolean variables,
#CSP(·,F) is exactly one of the following:

1 P-time solvable;

2 P-time solvable over planar graphs but #P-hard over general graphs;

3 #P-hard over planar graphs.

7 / 42

Constraint function isomorphism

1 2

4 5

3

1 2

3 4

5

σ(1) = 2

σ(2) = 1

σ(4) = 4

σ(5) = 3

σ(3) = 5

Graphs G ∼= H if ∃ a bijection σ : V (G) → V (H) such that

AG (u, v) = AH(σ(u), σ(v))

for every u, v .
AG ,AH are binary constraint functions.
n-ary F ∼= G if ∃ a bijection σ : D(F) → D(G) such that

F (x1, . . . , xn) = G (σ(x1), . . . , σ(xn))

for every x1, . . . , xn.
8 / 42

#CSP invariance determines isomorphism

Theorem (Lovász’67)

G ∼= H iff [hom(K ,G) = hom(K ,H) ∀ graph K].

Theorem (Y. ’23)

F ∼= G iff [#CSP(K,F) = #CSP(K,G) ∀ #CSP instance K].

AG : V (G)2 → {0, 1} is

Binary
Symmetric
0-1-valued

Our F is in general

Arbitrary-arity,
Asymmetric,
Real-valued.

9 / 42

Signature grids

K

δ(■)

Constraint-variable incidence graph

• – variable

■ – constraint (F)

■ applied to adjacent variables δ(■).

#CSP(K,F) =
∑

ϕ:{•}→D(F)

∏
■

F (ϕ(δ(■))).

10 / 42

Gadgets

A gadget is a signature grid with dangling edges.

Several constraint functions assembled into a new constraint.

Inputs along dangling edges.

11 / 42

Gadgets and signature matrices

a

b

x

y

z

K

a, b, x , y , z ∈ D(F)

|D(F)|2 × |D(F)|3 signature matrix M(K).

M(K)ab,xyz =
∑

ϕ:{•}→D(F)
ϕ(•,•)=(a,b)

ϕ(•,•,•)=(x ,y ,z)

∏
■

F (ϕ(δ(■))).

12 / 42

Gadget operations

K

L

K⊗ L

13 / 42

Gadget operations

K

L

K ◦ L

14 / 42

Gadget operations

K

L

L†

15 / 42

Gadgets operations

Gadget operations correspond to signature matrix operations:

M(K⊗ L) = M(K)⊗M(L)
M(K ◦ L) = M(K)M(L)
M(K†) = M(K)†

16 / 42

Building block gadgets

Theorem

The set of all #CSP(·,F) gadgets is exactly ⟨E1,0,E1,2,Fn,0,S⟩◦,⊗,†.

F

E1,0 E1,2 Fn,0 S

M(E1,2)x ,yz =

{
1 x = y = z

0 otherwise
.

17 / 42

Gadget decomposition

18 / 42

Constraint function isomorphism revisited

Recall: n-ary F ∼= G if ∃ a bijection σ : D(F) → D(G) such that

F (x1, . . . , xn) = G (σ(x1), . . . , σ(xn))

for every x1, . . . , xn.

Let Pσ be the permutation matrix for σ

Let f , g ∈ R|D(F)|n be vectorizations of F ,G

P⊗n
σ f = g

Think: apply σ to each axis

F ∼= G iff there is a permutation matrix P s.t. P⊗nf = g .

Aut(F) = {P : P⊗nf = f }.

19 / 42

The intertwiner space

CAut(F) =
{
matrix A

∣∣ P⊗mA = AP⊗d ∀P ∈ Aut(F)
}

All the matrices A fixed by every automorphism of F

Lemma

CAut(F) = span(⟨M(E1,0),M(E1,2),M(Fn,0),M(S)⟩◦,⊗,†).

M(Fn,0) = f ∈ CAut(F) (because P⊗nf = f if P ∈ Aut(F)).

M(E1,0),M(E1,2),M(S) fixed under all permutations, so in CAut(F).
⊆: Tannaka-Krein duality for classical permutation groups.

20 / 42

Intertwiners to Isomorphism

Lemma

CAut(F) = span(⟨M(E1,0),M(E1,2),M(Fn,0),M(S)⟩◦,⊗,†).

Recall:

Theorem

The set of all #CSP(·,F) gadgets is exactly ⟨E1,0,E1,2,Fn,0,S⟩◦,⊗,†.

Corollary

CAut(F) = span(Signature matrices of #CSP(·,F) gadgets).

21 / 42

Intertwiners to Isomorphism

Corollary

CAut(F) = span(Signature matrices of #CSP(·,F) gadgets).

Connection between Aut(F) and gadgets gives:

Lemma

Let x , y ∈ D(F). If M(K)x = M(K)y for every gadget K with one
dangling edge, then ∃σ ∈ Aut(F) s.t. σ(x) = y .

Create F ′: add a domain elt vf to D(F) ‘adjacent’ to every other
domain elt.

Create G ′ similarly by adding vg .

Apply Lemma to vf and vg and ‘disjoint union’ F ′ ⊔ G ′

(use assumption that #CSP(K,F) = #CSP(K,G) for every K).

Gives σ ∈ Aut(F ′ ⊔ G ′) such that σ(vf) = vg
F ′ and G ′ are ‘connected’, so F ∼= G .

22 / 42

Quantum Isomorphism

Recall F ∼= G if there is a permutation matrix P such that P⊗nf = g .

Say F ∼=q G (F and G are quantum isomorphic) if there is a
quantum permutation matrix U such that U⊗nf = g .

Quantum isomorphism originally defined in terms of a quantum
nonlocal game [AMRSSV ’18].

Defined a cooperative nonlocal game s.t. players have win probability 1
iff two graphs are isomorphic
Graphs are quantum isomorphic iff the players have win probability 1
when allowed to measure a shared quantum state.

23 / 42

Quantum Isomorphism

There are pairs of graphs which are quantum isomorphic but not
isomorphic!

From theory of quantum nonlocal games [AMRSSV ’18]

Non-isomorphic Hadamard graphs [Chan and Martin ’24]

24 / 42

Quantum permutation matrices

A quantum permutation matrix is an abstract relaxation of a
permutation matrix.

Entries come from an abstract space instead of {0, 1}.
Entries don’t necessarily commute.

Rows and columns still add up to 1

Product of distinct elements in same row or column in 0

Any quantum permutation matrix whose entries commute is a
permutation matrix.

25 / 42

Quantum Isomorphism and planarity

Theorem (Lovász’67)

G ∼= H iff [hom(K ,G) = hom(K ,H) ∀ graph K].

Theorem (Mančinska-Roberson ’19)

G ∼=q H iff [hom(K ,G) = hom(K ,H) ∀ planar graph K].

Theorem (Y.’23)

F ∼= G iff [#CSP(K,F) = #CSP(K,G) ∀ #CSP instance K].

Theorem (Cai-Y.’23)

F ∼=q G iff [#CSP(K,F) = #CSP(K,G) ∀ planar #CSP instance K].

#CSP instance is planar if its signature grid (constraint-variable
incidence graph) is planar.

What does planarity have to do with noncommutativity?
26 / 42

The planar gadget decomposition

Recall:

Theorem

The set of all #CSP(·,F) gadgets is exactly ⟨E1,0,E1,2,Fn,0,S⟩◦,⊗,†.

Theorem

The set of all planar #CSP(·,F) gadgets is exactly ⟨E1,0,E1,2,Fn,0⟩◦,⊗,†.

F

E1,0 E1,2 Fn,0 S

27 / 42

The planar gadget decomposition

Can decompose any planar gadget into a chain of simple gadgets

28 / 42

A quantum holographic transformation

Recall our main theorem:

Theorem (Cai-Y.’23)

F ∼=qc G iff #CSP(K,F) = #CSP(K,G) ∀ planar K.

Suppose F ∼=qc G , so U⊗nf = g for quantum permutation matrix U .
(=⇒): View U itself as a constraint function.

29 / 42

A quantum holographic transformation

The planar gadget decomposition converts K to a composition of building
block gadgets.

30 / 42

A quantum holographic transformation

Insert (U⊗ri)−1U⊗ri = I between the ith and (i + 1)st factors (preserves
#CSP(K,F) value).

31 / 42

A quantum holographic transformation

Reassociate. Now, U⊗nf = g and U doesn’t affect • vertices, so...

32 / 42

A quantum holographic transformation

Every F is converted to G without changing the #CSP value:
#CSP(K,F) = #CSP(K,G).

33 / 42

A quantum holographic transformation

Can’t view U as a constraint function in general (nonplanar) signature
grids because entries of U don’t commute.

#CSP value is a sum of products of constraint function evaluations.

Planar gadget decomposition gives order of vertices

hence multiplication order of U entries.

34 / 42

Planar Symmetries

35 / 42

Planar Symmetries

U⊗2

E2,0
◦ =

E2,0

E1,1 E1,1

◦ ◦ ◦
U U†

36 / 42

The quantum automorphism group and its intertwiners

Theorem (Cai-Y.’23)

F ∼=qc G iff #CSP(K,F) = #CSP(K,G) ∀ planar K.

Next, prove (⇐). Similar techniques to classical/nonplanar proof, but
more involved.

Definition

Quantum permutation matrix U s.t. U⊗nf = f defines the quantum
automorphism group Qut(F) of F .

Recall U⊗nf = g defined quantum isomorphism of F and G .

Instead of studying Qut(F) directly, study its intertwiner space

CQut(F) =
{
matrix A

∣∣ U⊗mA = AU⊗d
}

37 / 42

Characterization of the intertwiners

Recall:

Theorem

The set of all #CSP(·,F) gadgets is exactly ⟨E1,0,E1,2,Fn,0,S⟩◦,⊗,†.

Lemma

CAut(F) = span(⟨M(E1,0),M(E1,2),M(Fn,0),M(S)⟩◦,⊗,†)

= span(Signature matrices of #CSP(·,F) gadgets)

Theorem

The set of all planar #CSP(·,F) gadgets is exactly ⟨E1,0,E1,2,Fn,0⟩◦,⊗,†.

Now this follows similarly to classical case using Tannaka-Krein duality:

Lemma

CQut(F) = span(⟨M(E1,0),M(E1,2),M(Fn,0)⟩◦,⊗,†)

= span(Signature matrices of planar #CSP(·,F) gadgets).
38 / 42

Planarity and noncommutativity

Lemma

CAut(F) = span(⟨M(E1,0),M(E1,2),M(Fn,0),M(S)⟩◦,⊗,†)

= span(Signature matrices of #CSP(·,F) gadgets)

Lemma

CQut(F) = span(⟨M(E1,0),M(E1,2),M(Fn,0)⟩◦,⊗,†)

= span(Signature matrices of planar #CSP(·,F) gadgets).

S

S allows for nonplanar gadgets.

Also, S ∈ CQut(F) iff entries of U
defining Qut(F) commute!

39 / 42

The converse

Theorem (Cai-Y.’23)

F ∼=q G iff [#CSP(K,F) = hom(K,G) ∀ planar #CSP instance K].

Lemma

CQut(F) = span(⟨M(E1,0),M(E1,2),M(Fn,0),M(S)⟩◦,⊗,†)

= span(Signature matrices of planar #CSP(·,F) gadgets)

Lemma

Let x , y ∈ D(F). If M(K)x = M(K)y for every planar gadget K with one
dangling edge, then F has a ‘quantum automorphism’ mapping x to y .

40 / 42

The converse

Lemma

Let x , y ∈ D(F). If M(K)x = M(K)y for every planar gadget K with one
dangling edge, then F has a ‘quantum automorphism’ mapping x to y .

Trick from classical case still works for quantum isomorphism:

Requires theory of orbits of quantum permutation groups [Lupini,
Mančinska and Roberson ’17]

Add vertices vf to F and vg to G adjacent to all other vertices

Apply Lemma to vf and vg and ‘disjoint union’ F ′ ⊔ G ′.

Gives quantum automorphism of F ′ ⊔ G ′ sending vf to vg .

F ∼=q G .

41 / 42

Thank you!
Questions?

42 / 42

