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Graph Homomorphism

A mapping ¢ : V(K) — V(G) is a graph homomorphism if it maps all
edges to edges: {u,v} € E(K) = {¢(u), ¢(v)} € E(G).
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Graph Homomorphism

A mapping ¢ : V(K) — V(G) is a graph homomorphism if it maps all
edges to edges: {u,v} € E(K) = {¢(u), ¢(v)} € E(G).
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Homomorphism Invariance Determines Isomorphism

Let hom(K, G) be the number of graph homomorphisms from K to G.

Theorem (Lovasz’67)
G = H iff [ hom(K, G) = hom(K, H) V graph K].

Goal: Extend this theorem to #CSP.
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The partition function for graph homomorphism

hom(K, G) = Z ]]-QS is a homomorphism K—G
¢:V(K)—=V(G)

= > I tewemeee

#:V(K)—=V(G) (u,v)€E(K)
= Y II Aséw),é(v)

¢:V(K)—=V(G) (u,v)EE(K)

@ Ag is adjacency matrix of G.

5/42



Counting graph homomorphisms is a counting constraint satisfation
problem (#CSP).
@ F is a constraint function on domain D(F).
o F of arity nismap F: D(F)" = R
@ #CSP(-, F) input is instance K = (X, ()
o X is set of variables
o (Xi,...,x;,) € Cis a constraint applying F to variables x;, ..., Xx; .

n

#CSP((X,C), F) = > I  Fla), ... é(x).

$:X—=D(F) (Xiy y--rXip JEC
hom(K, G) has variable set X = V(K), domain D(F) = V(G), constraint
set C = E£(K), and constraint function F = Ag.
hom(K,G)= > II  Ac(s(u),6(v)
¢:V(K)=V(G) (u,v)eEE(K)
— #CSP((V(K), E(K)), Ag).
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Why study #CSP?

@ Beautiful complexity dichotomy theorems

Theorem (Cai-Chen’17)

For any finite set F of C-valued constraint functions, #CSP(-,F) is
always either in P or #P-hard, with nothing in between.

Theorem (Cai-Fu’19)

For any set F of C-valued constraint functions over Boolean variables,
#CSP(-, F) is exactly one of the following:

@ P-time solvable;
© P-time solvable over planar graphs but #P-hard over general graphs;

© #P-hard over planar graphs.
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Constraint function isomorphism

e Graphs G = H if 3 a bijection o : V(G) — V/(H) such that
AG(U7 V) = AH(U(U)7 U(V))
for every u, v.

@ Ag, Ay are binary constraint functions.
@ n-ary F = G if 3 a bijection o : D(F) — D(G) such that

F(x1,...,xn) = G(o(x1),...,0(xn))

for every xq, ..., Xp.
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#CSP invariance determines isomorphism

Theorem (Lovasz’67)
G = H iff [ hom(K, G) = hom(K, H) V graph K].

Theorem (Y. ’23)
F = G iff [ #CSP(K, F) = #CSP(K, G) ¥ #CSP instance K].

e Ag: V(G)? — {0,1} is
o Binary
o Symmetric
o 0-1-valued

@ Our F is in general

o Arbitrary-arity,
o Asymmetric,
o Real-valued.

9/42



Signature grids

@ Constraint-variable incidence graph

@ e — variable

o M - constraint (F)

o W applied to adjacent variables 5(H).

#CSP(K, F) = > ] F(g(s(m))).

¢:{e}—D(F) W
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Gadgets

@ A gadget is a signature grid with dangling edges.
@ Several constraint functions assembled into a new constraint.

@ Inputs along dangling edges.
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Gadgets and signature matrices

K
X
a
y
b
z

@ a,b,x,y,z€ D(F)
e |D(F)|?> x |D(F)|? signature matrix M(K).

MKtz = > ] Fe(s(m))).

¢{e}=D(F) W
¢(e,0)=(a,b)
#(0,0,0)=(x,y,2)
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Gadget operations

K
L

<

K®L

?*
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Gadget operations

A e

Kol
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Gadget operations

B
o
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Gadgets operations

o Gadget operations correspond to signature matrix operations:
e M(K®L)=M(K)® M(L)
o M(KoL)=M(K)M(L)
o M(K') = M(K)T
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Building block gadgets

The set of all #CSP(-, F) gadgets is exactly (EX?, EM2 F™0 S), o 1.

ELO E1,2 Fn,O S

H{§><

1l x=y=z

0 otherwise
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Gadget decomposition

El2 @ FO3 @ E22
Sa12)0)

Fi 01%

S(14563)(2)(7)

F, ® 1%
S(1234)
HE‘<*

\ //
N Y
A ) Ej ( o — // o -
/ \\ .\ [
\\ \ / .
AN
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Constraint function isomorphism revisited

Recall: n-ary F = G if 3 a bijection o : D(F) — D(G) such that
F(x1,...,xn) = G(o(x1),...,0(xn))

for every xq,...,Xx,.
@ Let P, be the permutation matrix for o
o Letf,ge RIP(A)I" be vectorizations of F, G
o PO'f =g
@ Think: apply o to each axis
@ F = G iff there is a permutation matrix P s.t. P®"f = g.
o Aut(F)={P: P®"f =f}.
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The intertwiner space

Caut(F) = { matrix A | PEMA = AP®? VP € Aut(F)}

All the matrices A fixed by every automorphism of F

Caut(F) = span((M(E™%), M(E™?), M(F"), M(S))o,0.1)-

ELO El2 Fr0

el

o M(F"9) =f¢ Caut(F) (because PE"f = f if P € Aut(F)).
o M(EM0), M(EM?), M(S) fixed under all permutations, so in Caut(F)-

@ C: Tannaka-Krein duality for classical permutation groups.
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Intertwiners to Isomorphism

Caut(F) = span((M(E™%), M(E'?), M(F"), M(S))o,x.1)-

Recall:

The set of all #CSP(-, F) gadgets is exactly (E'%, EM? F™0 S), ¢ ;.

Caut(F) = span(Signature matrices of #CSP(-, F) gadgets).
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Intertwiners to Isomorphism

Caut(F) = span(Signature matrices of #CSP(-, F) gadgets).

Connection between Aut(F) and gadgets gives:

Let x,y € D(F). If M(K), = M(K), for every gadget K with one
dangling edge, then 3o € Aut(F) s.t. o(x) =y.

@ Create F’: add a domain elt v¢ to D(F) ‘adjacent’ to every other
domain elt.

Create G’ similarly by adding v,.

Apply Lemma to v and vg and ‘disjoint union’ F' LU G’

(use assumption that #CSP(K, F) = #CSP(K, G) for every K).
Gives o € Aut(F’ U G’) such that o(vf) = vg

F" and G’ are ‘connected’, so F = G.
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Quantum Isomorphism

@ Recall F = G if there is a permutation matrix P such that P®"f = g.

@ Say F =, G (F and G are quantum isomorphic) if there is a
quantum permutation matrix I/ such that U®"f = g.
@ Quantum isomorphism originally defined in terms of a quantum
nonlocal game [AMRSSV '18].
o Defined a cooperative nonlocal game s.t. players have win probability 1

iff two graphs are isomorphic
o Graphs are quantum isomorphic iff the players have win probability 1
when allowed to measure a shared quantum state.
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There are pairs of graphs which are quantum isomorphic but not

isomorphic!

18]

@ From theory of quantum nonlocal games [AMRSSV
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@ Non-isomorphic Hadamard graphs [Chan and Martin '24]
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Quantum permutation matrices

A quantum permutation matrix is an abstract relaxation of a
permutation matrix.

@ Entries come from an abstract space instead of {0, 1}.
Entries don’t necessarily commute.
Rows and columns still add up to 1

Product of distinct elements in same row or column in 0

Any quantum permutation matrix whose entries commute is a
permutation matrix.
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Quantum Isomorphism and planarity

Theorem (Lovasz’67)
G = H iff [ hom(K, G) = hom(K, H) V graph K].

Theorem (Manéinska-Roberson ’19)
G =4 H iff [ hom(K, G) = hom(K, H) V planar graph K].

Theorem (Y.’23)
F = G iff [ #CSP(K, F) = #CSP(K, G) ¥ #CSP instance K].

Theorem (Cai-Y.’23)

F =4 G iff [ #CSP(K, F) = #CSP(K, G) V planar #CSP instance K].

@ #CSP instance is planar if its signature grid (constraint-variable
incidence graph) is planar.
@ What does planarity have to do with noncommutativity?
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The planar gadget decomposition

Recall:

The set of all #CSP(-, F) gadgets is exactly (EX0 EM2 F™0 S), o ..

The set of all planar #CSP(-, F) gadgets is exactly (E?, E12, F"’°>oy®,1.

ELO E1,2 Fn,O S

H{§><
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The planar gadget decomposition

@ Can decompose any planar gadget into a chain of simple gadgets

28/42



A quantum holographic transformation

Recall our main theorem:

Theorem (Cai-Y.’23)

F =4 G iff #CSP(K, F) = #CSP(K, G) V planar K.

@ Suppose F 24 G, so U®"f = g for quantum permutation matrix .
@ (= ): View U itself as a constraint function.
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A quantum holographic transformation

The planar gadget decomposition converts K to a composition of building
block gadgets.
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A quantum holographic transformation

UEOR @er)
| J,
—A —A
—A —A
J— —A
A — -
~ A
o A o \ /\/ o o.
pd \ — A
A __ g
T A
A A
Uer U®r:

Insert (U®7)1U" = | between the ith and (i + 1)st factors (preserves
#CSP(K, F) value).
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A quantum holographic transformation

wery e
| |
l J
A 2]
A A
— A
A —
— A
o A o o o
— A
N -
T A
A A
Uuer Uerz

Reassociate. Now, U®"f = g and U/ doesn't affect ® vertices, so...
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A quantum holographic transformation

Every F is converted to G without changing the #CSP value:
#CSP(K, F) = #CSP(K, G).
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A quantum holographic transformation

@ Can't view U as a constraint function in general (nonplanar) signature
grids because entries of U don't commute.

o #CSP value is a sum of products of constraint function evaluations.
@ Planar gadget decomposition gives order of vertices
o hence multiplication order of U entries.
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Planar Symmetries

o F2 3 o rL(®3 GZ.3 (L(®5 o FS.O GS.O
A
G — A F G
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A
U2 o F(z) ° rLI®3 (G®)23 > o (F*)“ ° (,ugz)? (G)32
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Planar Symmetries
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The quantum automorphism group and its intertwiners

Theorem (Cai-Y.’23)
F =4 G iff #CSP(K, F) = #CSP(K, G) V planar K.

@ Next, prove (<). Similar techniques to classical/nonplanar proof, but
more involved.

Definition

Quantum permutation matrix U s.t. U®"f = f defines the quantum
automorphism group Qut(F) of F.

@ Recall U®"f = g defined quantum isomorphism of F and G.
@ Instead of studying Qut(F) directly, study its intertwiner space
Cqui(r) = {matrix A | U®TA = AU®d}
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Characterization of the intertwiners

Recall:

The set of all #CSP(-, F) gadgets is exactly (E'?, EL2 F™0, S)o,w,i-

Caut(F) = span((M(E"?), M(EY?), M(F™®), M(S))o,e,1)
= span(Signature matrices of #CSP(-, F) gadgets)

The set of all planar #CSP(-, F) gadgets is exactly (E}9, E»?, F"’0>07® $.

)

Now this follows similarly to classical case using Tannaka-Krein duality:

CQut(F) = span((I\/I(El’O), M(El’z)v M(Fn70)>0,®,T)
= span(Signature matrices of planar #CSP(-, F) gadgets). /e




Planarity and noncommutativity

Caut(F) = span({M(E"), M(E"?), M(F™), M(S))o.1)
= span(Signature matrices of #CSP(-, F) gadgets)

Caue(F) = span((M(E'°), M(E*?), M(F™®)) o 1)
= span(Signature matrices of planar #CSP(-, F) gadgets).

@ S allows for nonplanar gadgets.
S :>< o Also, S € Cque(F) iff entries of U
defining Qut(F) commute!

\
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The converse

Theorem (Cai-Y.’23)
F =4 G iff [ #CSP(K, F) = hom(K, G) V planar #CSP instance K].

Caui(F) = span({M(E?), M(E"2), M(F™®), M(S))o,,t)
= span(Signature matrices of planar #CSP(-, F) gadgets)

.

Let x,y € D(F). If M(K), = M(K), for every planar gadget K with one
dangling edge, then F has a ‘quantum automorphism’ mapping x to y.
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The converse

Let x,y € D(F). If M(K), = M(K), for every planar gadget K with one
dangling edge, then F has a ‘quantum automorphism’ mapping x to y.

@ Trick from classical case still works for quantum isomorphism:

o Requires theory of orbits of quantum permutation groups [Lupini,
Man&inska and Roberson '17]

@ Add vertices vr to F and v, to G adjacent to all other vertices
@ Apply Lemma to v¢ and v, and ‘disjoint union’ F' LU G'.

@ Gives quantum automorphism of F' LI G’ sending vr to vg.

o F=,G.
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Thank you!
Questions?



