General and Planar #CSP Equality Corresponds to Classical and Quantum Isomorphism

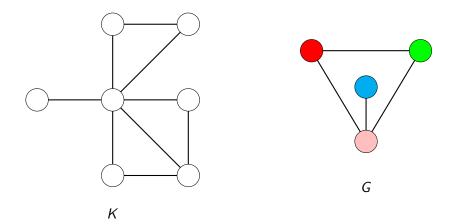
Ben Young and Jin-Yi Cai

University of Wisconsin-Madison

November 9, 2023

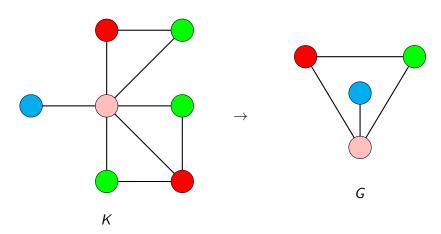
Graph Homomorphism

A mapping $\phi: V(K) \to V(G)$ is a **graph homomorphism** if it maps all edges to edges: $\{u, v\} \in E(K) \Longrightarrow \{\phi(u), \phi(v)\} \in E(G)$.



Graph Homomorphism

A mapping $\phi: V(K) \to V(G)$ is a **graph homomorphism** if it maps all edges to edges: $\{u, v\} \in E(K) \Longrightarrow \{\phi(u), \phi(v)\} \in E(G)$.



Homomorphism Invariance Determines Isomorphism

Let hom(K, G) be the number of graph homomorphisms from K to G.

Theorem (Lovász'67)

 $G \cong H \text{ iff } [\text{hom}(K, G) = \text{hom}(K, H) \ \forall \text{ graph } K].$

Goal: Extend this theorem to #CSP.

The partition function for graph homomorphism

$$\begin{aligned} \mathsf{hom}(K,G) &= \sum_{\phi: V(K) \to V(G)} \mathbb{1}_{\phi \text{ is a homomorphism } K \to G} \\ &= \sum_{\phi: V(K) \to V(G)} \prod_{(u,v) \in E(K)} \mathbb{1}_{(\phi(u),\phi(v)) \in E(G)} \\ &= \sum_{\phi: V(K) \to V(G)} \prod_{(u,v) \in E(K)} A_G(\phi(u),\phi(v)) \end{aligned}$$

• A_G is adjacency matrix of G.

#CSP

Counting graph homomorphisms is a **counting constraint satisfation problem** (#CSP).

- F is a **constraint function** on **domain** D(F).
 - F of arity n is map $F: D(F)^n \to \mathbb{R}$
- $\#CSP(\cdot, F)$ input is **instance** K = (X, C)
 - X is set of variables
 - $(x_{i_1}, \ldots, x_{i_n}) \in C$ is a **constraint** applying F to variables x_{i_1}, \ldots, x_{i_n} .

$$\#\mathsf{CSP}((X, C), F) = \sum_{\phi: X \to D(F)} \prod_{(x_{i_1}, \dots, x_{i_n}) \in C} F(\phi(x_{i_1}), \dots, \phi(x_{i_n})).$$

hom(K, G) has variable set X = V(K), domain D(F) = V(G), constraint set C = E(K), and constraint function $F = A_G$.

$$hom(K, G) = \sum_{\phi: V(K) \to V(G)} \prod_{(u,v) \in E(K)} A_G(\phi(u), \phi(v))$$
$$= \#CSP((V(K), E(K)), A_G).$$

Why study #CSP?

Beautiful complexity dichotomy theorems

Theorem (Cai-Chen'17)

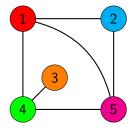
For any finite set \mathcal{F} of \mathbb{C} -valued constraint functions, $\#CSP(\cdot, \mathcal{F})$ is always either in P or #P-hard, with nothing in between.

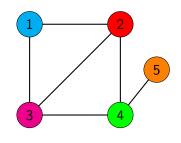
Theorem (Cai-Fu'19)

For any set \mathcal{F} of \mathbb{C} -valued constraint functions over Boolean variables, $\#CSP(\cdot, \mathcal{F})$ is exactly one of the following:

- P-time solvable;
- 2 P-time solvable over planar graphs but #P-hard over general graphs;
- 3 #P-hard over planar graphs.

Constraint function isomorphism





$$\sigma(1) = 2$$

$$\sigma(2) = 1$$

$$\sigma(4) = 4$$

$$\sigma(5) = 3$$

$$\sigma(3) = 5$$

• Graphs $G \cong H$ if \exists a bijection $\sigma : V(G) \rightarrow V(H)$ such that

$$A_G(u, v) = A_H(\sigma(u), \sigma(v))$$

for every u, v.

- A_G , A_H are binary constraint functions.
- *n*-ary $F \cong G$ if \exists a bijection $\sigma : D(F) \rightarrow D(G)$ such that

$$F(x_1,\ldots,x_n)=G(\sigma(x_1),\ldots,\sigma(x_n))$$

for every x_1, \ldots, x_n .

#CSP invariance determines isomorphism

Theorem (Lovász'67)

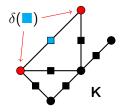
$$G \cong H \text{ iff } [\text{hom}(K, G) = \text{hom}(K, H) \ \forall \text{ graph } K].$$

Theorem (Y. '23)

$$F \cong G \text{ iff } [\# \mathsf{CSP}(\mathbf{K}, F) = \# \mathsf{CSP}(\mathbf{K}, G) \ \forall \ \# \mathsf{CSP} \text{ instance } \mathbf{K}].$$

- $A_G: V(G)^2 \to \{0,1\}$ is
 - Binary
 - Symmetric
 - 0-1-valued
- Our F is in general
 - Arbitrary-arity,
 - Asymmetric,
 - Real-valued.

Signature grids

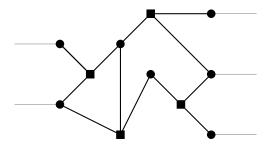


- Constraint-variable incidence graph
- – variable
- $\bullet \blacksquare$ constraint (F)
- \blacksquare applied to adjacent variables $\delta(\blacksquare)$.

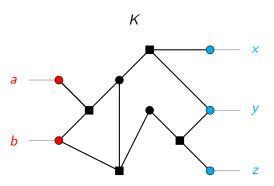
$$\#\mathsf{CSP}(\mathsf{K},F) = \sum_{\phi: \{\bullet\} \to D(F)} \prod_{\blacksquare} F(\phi(\delta(\blacksquare))).$$

Gadgets

- A gadget is a signature grid with dangling edges.
- Several constraint functions assembled into a new constraint.
- Inputs along dangling edges.



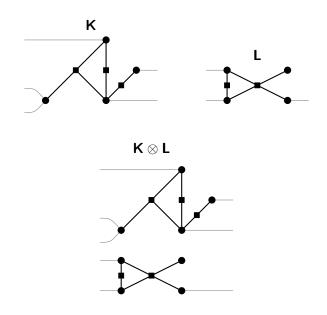
Gadgets and signature matrices



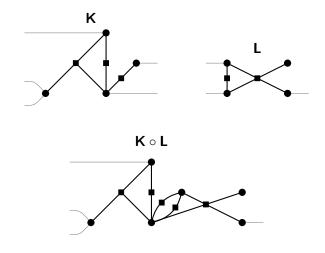
- $a, b, x, y, z \in D(F)$
- $|D(F)|^2 \times |D(F)|^3$ signature matrix $M(\mathbf{K})$.

$$M(\mathbf{K})_{ab,\times yz} = \sum_{\substack{\phi:\{\bullet\}\to D(F)\\ \phi(\bullet,\bullet)=(a,b)\\ \phi(\bullet,\bullet,\bullet)=(x,y,z)}} \prod_{\blacksquare} F(\phi(\delta(\blacksquare))).$$

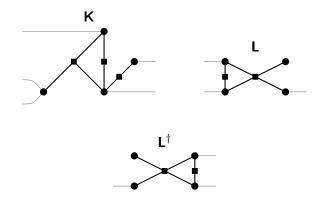
Gadget operations



Gadget operations



Gadget operations



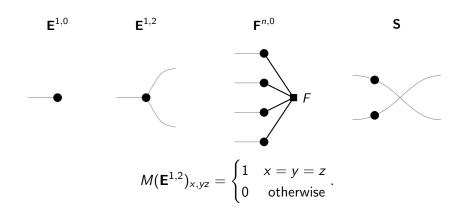
Gadgets operations

- Gadget operations correspond to signature matrix operations:
 - $M(K \otimes L) = M(K) \otimes M(L)$
 - $M(K \circ L) = M(K)M(L)$
 - $M(\mathbf{K}^{\dagger}) = M(\mathbf{K})^{\dagger}$

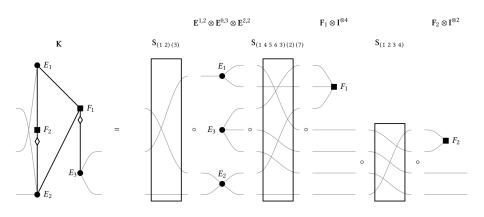
Building block gadgets

Theorem

The set of all $\#CSP(\cdot, F)$ gadgets is exactly $(\mathbf{E}^{1,0}, \mathbf{E}^{1,2}, \mathbf{F}^{n,0}, \mathbf{S})_{\circ, \otimes, \dagger}$.



Gadget decomposition



Constraint function isomorphism revisited

Recall: *n*-ary $F \cong G$ if \exists a bijection $\sigma : D(F) \rightarrow D(G)$ such that

$$F(x_1,\ldots,x_n)=G(\sigma(x_1),\ldots,\sigma(x_n))$$

for every x_1, \ldots, x_n .

- Let P_{σ} be the permutation matrix for σ
- Let $f, g \in \mathbb{R}^{|D(F)|^n}$ be vectorizations of F, G
- $P_{\sigma}^{\otimes n}f = g$
- Think: apply σ to each axis
- $F \cong G$ iff there is a permutation matrix P s.t. $P^{\otimes n}f = g$.
- $Aut(F) = \{P : P^{\otimes n}f = f\}.$

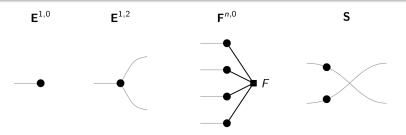
The intertwiner space

$$C_{\mathsf{Aut}(F)} = \{ \mathsf{ matrix } A \mid P^{\otimes m}A = AP^{\otimes d} \ \forall P \in \mathsf{Aut}(F) \}$$

All the matrices A fixed by every automorphism of F

Lemma

$$C_{\operatorname{Aut}(F)} = \operatorname{span}(\langle M(\mathsf{E}^{1,0}), M(\mathsf{E}^{1,2}), M(\mathsf{F}^{n,0}), M(\mathsf{S}) \rangle_{\circ, \otimes, \dagger}).$$



- $M(\mathbf{F}^{n,0}) = f \in C_{\operatorname{Aut}(F)}$ (because $P^{\otimes n}f = f$ if $P \in \operatorname{Aut}(F)$).
- $M(\mathbf{E}^{1,0}), M(\mathbf{E}^{1,2}), M(\mathbf{S})$ fixed under all permutations, so in $C_{\mathrm{Aut}(F)}$.
- ⊆: Tannaka-Krein duality for classical permutation groups.

Intertwiners to Isomorphism

Lemma

$$C_{\mathsf{Aut}(F)} = \mathsf{span}(\langle M(\mathsf{E}^{1,0}), M(\mathsf{E}^{1,2}), M(\mathsf{F}^{n,0}), M(\mathsf{S}) \rangle_{\circ, \otimes, \dagger}).$$

Recall:

Theorem

The set of all $\#CSP(\cdot, F)$ gadgets is exactly $\langle \mathbf{E}^{1,0}, \mathbf{E}^{1,2}, \mathbf{F}^{n,0}, \mathbf{S} \rangle_{\circ, \otimes, \dagger}$.

Corollary

 $C_{Aut(F)} = span(Signature matrices of #CSP(\cdot, F) gadgets).$

Intertwiners to Isomorphism

Corollary

$$C_{\mathsf{Aut}(F)} = \mathsf{span}(\mathsf{Signature} \ \mathsf{matrices} \ \mathsf{of} \ \#\mathsf{CSP}(\cdot,F) \ \mathsf{gadgets}).$$

Connection between Aut(F) and gadgets gives:

Lemma

Let $x, y \in D(F)$. If $M(\mathbf{K})_x = M(\mathbf{K})_y$ for every gadget \mathbf{K} with one dangling edge, then $\exists \sigma \in \operatorname{Aut}(F)$ s.t. $\sigma(x) = y$.

- Create F': add a domain elt v_f to D(F) 'adjacent' to every other domain elt.
- Create G' similarly by adding v_g .
- Apply Lemma to v_f and v_g and 'disjoint union' $F' \sqcup G'$
- (use assumption that #CSP(K, F) = #CSP(K, G) for every K).
- Gives $\sigma \in \operatorname{Aut}(F' \sqcup G')$ such that $\sigma(v_f) = v_g$
- F' and G' are 'connected', so $F \cong G$.

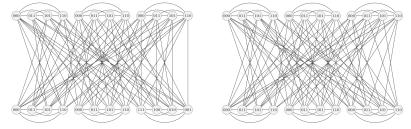
Quantum Isomorphism

- Recall $F \cong G$ if there is a permutation matrix P such that $P^{\otimes n}f = g$.
- Say $F \cong_q G$ (F and G are quantum isomorphic) if there is a quantum permutation matrix \mathcal{U} such that $\mathcal{U}^{\otimes n}f = g$.
- Quantum isomorphism originally defined in terms of a quantum nonlocal game [AMRSSV '18].
 - Defined a cooperative nonlocal game s.t. players have win probability 1 iff two graphs are isomorphic
 - Graphs are quantum isomorphic iff the players have win probability 1 when allowed to measure a shared quantum state.

Quantum Isomorphism

There are pairs of graphs which are quantum isomorphic but not isomorphic!

• From theory of quantum nonlocal games [AMRSSV '18]



Non-isomorphic Hadamard graphs [Chan and Martin '24]

Quantum permutation matrices

A quantum permutation matrix is an abstract relaxation of a permutation matrix.

- Entries come from an abstract space instead of $\{0,1\}$.
- Entries don't necessarily commute.
- Rows and columns still add up to 1
- Product of distinct elements in same row or column in 0
- Any quantum permutation matrix whose entries commute is a permutation matrix.

Quantum Isomorphism and planarity

Theorem (Lovász'67)

 $G \cong H \text{ iff } [\text{hom}(K, G) = \text{hom}(K, H) \ \forall \text{ graph } K].$

Theorem (Mančinska-Roberson '19)

 $G \cong_q H \ iff [\ \mathsf{hom}(K,G) = \mathsf{hom}(K,H) \ \forall \ \mathit{planar} \ \mathit{graph} \ K].$

Theorem (Y.'23)

 $F \cong G \text{ iff } [\# \mathsf{CSP}(\mathbf{K}, F) = \# \mathsf{CSP}(\mathbf{K}, G) \ \forall \ \# \mathsf{CSP} \text{ instance } \mathbf{K}].$

Theorem (Cai-Y.'23)

 $F\cong_q G \ \textit{iff} \ [\ \#\mathsf{CSP}(\mathbf{K},F)=\#\mathsf{CSP}(\mathbf{K},G) \ \forall \ \textit{planar} \ \#\textit{CSP} \ \textit{instance} \ \mathbf{K}].$

- #CSP instance is planar if its signature grid (constraint-variable incidence graph) is planar.
- What does planarity have to do with noncommutativity?

The planar gadget decomposition

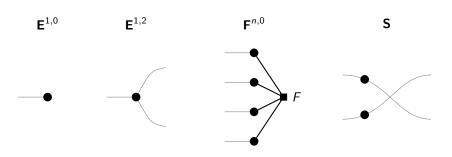
Recall:

Theorem

The set of all $\#CSP(\cdot, F)$ gadgets is exactly $\langle \mathbf{E}^{1,0}, \mathbf{E}^{1,2}, \mathbf{F}^{n,0}, \mathbf{S} \rangle_{\circ, \otimes, \dagger}$.

Theorem

The set of all planar $\#\mathsf{CSP}(\cdot,F)$ gadgets is exactly $\langle \mathbf{E}^{1,0},\mathbf{E}^{1,2},\mathbf{F}^{n,0}\rangle_{\circ,\otimes,\dagger}$.



The planar gadget decomposition

• Can decompose any planar gadget into a chain of simple gadgets

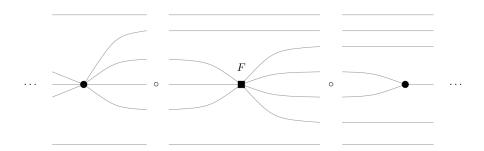


Recall our main theorem:

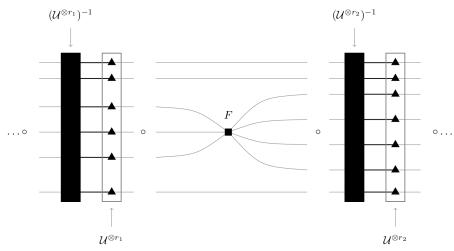
Theorem (Cai-Y.'23)

$$F \cong_{qc} G \text{ iff } \# \textit{CSP}(\mathbf{K}, F) = \# \textit{CSP}(\mathbf{K}, G) \ \forall \ \textit{planar} \ \mathbf{K}.$$

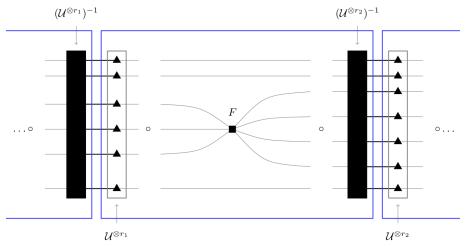
- Suppose $F \cong_{qc} G$, so $\mathcal{U}^{\otimes n} f = g$ for quantum permutation matrix \mathcal{U} .
- ullet (\Longrightarrow): View ${\mathcal U}$ itself as a constraint function.



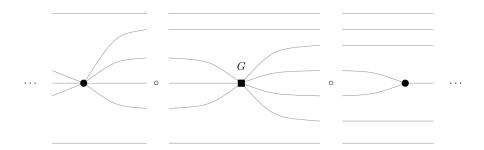
The planar gadget decomposition converts ${\bf K}$ to a composition of building block gadgets.



Insert $(\mathcal{U}^{\otimes r_i})^{-1}\mathcal{U}^{\otimes r_i}=I$ between the ith and (i+1)st factors (preserves $\#\mathsf{CSP}(\mathbf{K},F)$ value).



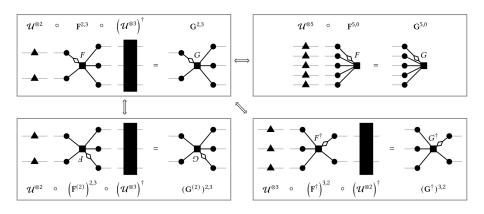
Reassociate. Now, $\mathcal{U}^{\otimes n}f=g$ and \mathcal{U} doesn't affect ullet vertices, so...



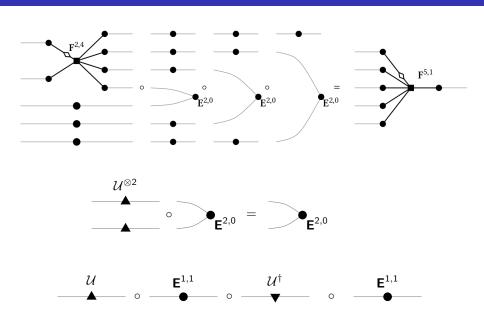
Every F is converted to G without changing the $\#CSP(\mathbf{K}, F) = \#CSP(\mathbf{K}, G)$.

- Can't view $\mathcal U$ as a constraint function in general (nonplanar) signature grids because entries of $\mathcal U$ don't commute.
 - #CSP value is a sum of products of constraint function evaluations.
- Planar gadget decomposition gives order of vertices
 - ullet hence multiplication order of ${\cal U}$ entries.

Planar Symmetries



Planar Symmetries



The quantum automorphism group and its intertwiners

Theorem (Cai-Y.'23)

$$F \cong_{qc} G \text{ iff } \# \textit{CSP}(\mathbf{K}, F) = \# \textit{CSP}(\mathbf{K}, G) \ \forall \ \textit{planar} \ \mathbf{K}.$$

 Next, prove (⇐). Similar techniques to classical/nonplanar proof, but more involved.

Definition

Quantum permutation matrix $\mathcal U$ s.t. $\mathcal U^{\otimes n}f=f$ defines the *quantum* automorphism group $\operatorname{Qut}(F)$ of F.

- Recall $\mathcal{U}^{\otimes n}f = g$ defined quantum isomorphism of F and G.
- Instead of studying Qut(F) directly, study its intertwiner space

$$C_{Qut(F)} = \{ matrix \ A \ | \ \mathcal{U}^{\otimes m} A = A \mathcal{U}^{\otimes d} \}$$

Characterization of the intertwiners

Recall:

Theorem

The set of all $\#CSP(\cdot, F)$ gadgets is exactly $\langle \mathbf{E}^{1,0}, \mathbf{E}^{1,2}, \mathbf{F}^{n,0}, \mathbf{S} \rangle_{\circ, \otimes, \dagger}$.

Lemma

$$C_{\mathsf{Aut}(F)} = \mathsf{span}(\langle M(\mathbf{E}^{1,0}), M(\mathbf{E}^{1,2}), M(\mathbf{F}^{n,0}), M(\mathbf{S}) \rangle_{\circ, \otimes, \dagger})$$

= $\mathsf{span}(\mathsf{Signature matrices of } \#\mathsf{CSP}(\cdot, F) \; \mathsf{gadgets})$

Theorem

The set of all planar $\#CSP(\cdot, F)$ gadgets is exactly $\langle \mathbf{E}^{1,0}, \mathbf{E}^{1,2}, \mathbf{F}^{n,0} \rangle_{\circ, \otimes, \dagger}$.

Now this follows similarly to classical case using Tannaka-Krein duality:

Lemma
$$\begin{split} C_{\mathsf{Qut}(F)} &= \mathsf{span}(\langle M(\mathbf{E}^{1,0}), M(\mathbf{E}^{1,2}), M(\mathbf{F}^{n,0}) \rangle_{\circ, \otimes, \dagger}) \\ &= \mathsf{span}(\mathsf{Signature \ matrices \ of \ planar \ \#CSP(\cdot, F) \ gadgets}). \end{split}$$

Planarity and noncommutativity

Lemma

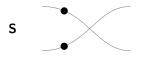
$$C_{\mathsf{Aut}(F)} = \mathsf{span}(\langle M(\mathbf{E}^{1,0}), M(\mathbf{E}^{1,2}), M(\mathbf{F}^{n,0}), M(\mathbf{S}) \rangle_{\circ, \otimes, \dagger})$$

= $\mathsf{span}(\mathsf{Signature\ matrices\ of\ } \#\mathsf{CSP}(\cdot, F) \ \mathsf{gadgets})$

Lemma

$$C_{\text{Qut}(F)} = \text{span}(\langle M(\mathbf{E}^{1,0}), M(\mathbf{E}^{1,2}), M(\mathbf{F}^{n,0}) \rangle_{\circ, \otimes, \dagger})$$

= span(Signature matrices of planar #CSP(·, F) gadgets).



- S allows for nonplanar gadgets.
- Also, S ∈ C_{Qut(F)} iff entries of U defining Qut(F) commute!

The converse

Theorem (Cai-Y.'23)

$$F \cong_q G \text{ iff } [\# \mathsf{CSP}(\mathbf{K}, F) = \mathsf{hom}(\mathbf{K}, G) \ \forall \ \textit{planar} \ \# \mathsf{CSP} \text{ instance } \mathbf{K}].$$

Lemma

$$C_{\text{Qut}(F)} = \text{span}(\langle M(\mathbf{E}^{1,0}), M(\mathbf{E}^{1,2}), M(\mathbf{F}^{n,0}), M(\mathbf{S}) \rangle_{\circ, \otimes, \dagger})$$

= span(Signature matrices of planar #CSP(·, F) gadgets)

Lemma

Let $x, y \in D(F)$. If $M(\mathbf{K})_x = M(\mathbf{K})_y$ for every planar gadget \mathbf{K} with one dangling edge, then F has a 'quantum automorphism' mapping x to y.

The converse

Lemma

Let $x, y \in D(F)$. If $M(\mathbf{K})_x = M(\mathbf{K})_y$ for every planar gadget \mathbf{K} with one dangling edge, then F has a 'quantum automorphism' mapping x to y.

- Trick from classical case still works for quantum isomorphism:
 - Requires theory of orbits of quantum permutation groups [Lupini, Mančinska and Roberson '17]
- Add vertices v_f to F and v_g to G adjacent to all other vertices
- Apply Lemma to v_f and v_g and 'disjoint union' $F' \sqcup G'$.
- Gives quantum automorphism of $F' \sqcup G'$ sending v_f to v_g .
- $F \cong_q G$.

Thank you! Questions?